Emerging electrochemical biosensing strategies using enzyme-incorporated metal-organic frameworks

被引:2
|
作者
Devi, K. S. Shalini [1 ]
Rezki, Muhammad [1 ]
Tsujimura, Seiya [1 ]
机构
[1] Univ Tsukuba, Fac Pure & Appl Sci, Div Mat Sci, 1-1-1 Tennodai, Tsukuba, Ibaraki 3055358, Japan
来源
TALANTA OPEN | 2023年 / 8卷
基金
奥地利科学基金会; 日本学术振兴会;
关键词
Metal -organic framework; Enzyme; Mediator; Nanoenzyme; Biosensing; POROUS CARBON; IMMOBILIZATION; BIOELECTRODES; DESIGN;
D O I
10.1016/j.talo.2023.100263
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
One of the most challenging in the field of nanotechnology and a crucial research area is the early detection of illness using biomarkers. Specific enzymes for biomarker identification require highly stable nanocarriers. One such material highlights the application of metal-organic frameworks (MOFs), owing to their fascinating merits, namely excessive chemical and thermal stability, biocompatibility, and minimal toxicity. MOFs are excellent options for building electrochemical (EC) biosensors because they provide ideal settings for attaching bio-recognition molecules. Hence, this review summarizes existing metallic MOFs, bimetallic MOFs and their syn-thetic methodologies, combinations of carbon materials with MOFs, differences between carbonized and uncarbonized MOF materials, crosslinker-modified MOFs, interactions of MOFs with enzymes, and their elec-trochemical detection. Finally, several strategies used to circumvent the drawbacks of current electrochemical technologies using MOF-based detection are critically examined while underlining the present difficulties and future prospects.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Aptamer-functionalized metal-organic frameworks (MOFs) for biosensing
    Lv, Mengzhen
    Zhou, Wan
    Tavakoli, Hamed
    Bautista, Cynthia
    Xia, Jianfei
    Wang, Zonghua
    Li, XiuJun
    BIOSENSORS & BIOELECTRONICS, 2021, 176
  • [32] The Applications of Metal-Organic Frameworks in Electrochemical Sensors
    Liu, Lantao
    Zhou, Yanli
    Liu, Shuang
    Xu, Maotian
    CHEMELECTROCHEM, 2018, 5 (01): : 6 - 19
  • [33] Electrochemical investigations of conductive metal-organic frameworks
    Miner, Elise
    Sheberla, Dennis
    Dinca, Mircea
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [34] Metal-organic frameworks for electrochemical sensors of neurotransmitters
    Gao, Lu-Lu
    Gao, En-Qing
    COORDINATION CHEMISTRY REVIEWS, 2021, 434
  • [35] Electrochemical cation insertion into metal-organic frameworks
    Yu, Chung Jui
    Aubrey, Michael L.
    Wiers, Brian M.
    Keitz, Benjamin K.
    Long, Jeffrey R.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [36] Modified Metal-Organic Frameworks for Electrochemical Applications
    Chen, Kefan
    Wang, Xiao-Li
    Hu, Wenhui
    Kong, Qingquan
    Pang, Huan
    Xu, Qiang
    SMALL STRUCTURES, 2022, 3 (05):
  • [37] Metal-organic frameworks for direct electrochemical applications
    Xu, Yuxia
    Li, Qing
    Xue, Huaiguo
    Pang, Huan
    COORDINATION CHEMISTRY REVIEWS, 2018, 376 : 292 - 318
  • [38] Defined metal atom aggregates precisely incorporated into metal-organic frameworks
    Kollmannsberger, Kathrin L.
    Kronthaler, Laura
    Jinschek, Joerg R.
    Fischer, Roland A.
    CHEMICAL SOCIETY REVIEWS, 2022, 51 (24) : 9933 - 9959
  • [39] Synthetic strategies for chiral metal-organic frameworks
    Zongsu Han
    Wei Shi
    Peng Cheng
    ChineseChemicalLetters, 2018, 29 (06) : 819 - 822
  • [40] The synthesis of metal-organic frameworks with template strategies
    Zhao, Nian
    Cai, Kun
    He, Hongming
    DALTON TRANSACTIONS, 2020, 49 (33) : 11467 - 11479