Flexible Job Shop Scheduling via Dual Attention Network-Based Reinforcement Learning

被引:20
|
作者
Wang, Runqing [1 ,2 ]
Wang, Gang [1 ,2 ]
Sun, Jian [1 ,2 ]
Deng, Fang [1 ,2 ]
Chen, Jie [3 ,4 ]
机构
[1] Beijing Inst Technol, Sch Automat, Natl Key Lab Autonomous Intelligent Unmanned Syst, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Chongqing Innovat Ctr, Chongqing 401120, Peoples R China
[3] Tongji Univ, Dept Control Sci & Engn, Shanghai 201804, Peoples R China
[4] Beijing Inst Technol, Natl Key Lab Autonomous Intelligent Unmanned Syst, Beijing 100081, Peoples R China
关键词
Production; Feature extraction; Decision making; Job shop scheduling; Manufacturing; Task analysis; Reinforcement learning; Deep reinforcement learning (DRL); flexible job-shop scheduling; graph attention networks (GATs); self-attention mechanism; ALGORITHM;
D O I
10.1109/TNNLS.2023.3306421
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Flexible manufacturing has given rise to complex scheduling problems such as the flexible job shop scheduling problem (FJSP). In FJSP, operations can be processed on multiple machines, leading to intricate relationships between operations and machines. Recent works have employed deep reinforcement learning (DRL) to learn priority dispatching rules (PDRs) for solving FJSP. However, the quality of solutions still has room for improvement relative to that by the exact methods such as OR-Tools. To address this issue, this article presents a novel end-to-end learning framework that weds the merits of self-attention models for deep feature extraction and DRL for scalable decision-making. The complex relationships between operations and machines are represented precisely and concisely, for which a dual-attention network (DAN) comprising several interconnected operation message attention blocks and machine message attention blocks is proposed. The DAN exploits the complicated relationships to construct production-adaptive operation and machine features to support high-quality decision-making. Experimental results using synthetic data as well as public benchmarks corroborate that the proposed approach outperforms both traditional PDRs and the state-of-the-art DRL method. Moreover, it achieves results comparable to exact methods in certain cases and demonstrates favorable generalization ability to large-scale and real-world unseen FJSP tasks.
引用
收藏
页码:3091 / 3102
页数:12
相关论文
共 50 条
  • [21] Dynamic Job Shop Scheduling via Deep Reinforcement Learning
    Liang, Xinjie
    Song, Wen
    Wei, Pengfei
    2023 IEEE 35TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2023, : 369 - 376
  • [22] Deep Reinforcement Learning Based on Graph Neural Network for Flexible Job Shop Scheduling Problem with Lot Streaming
    He, Junchao
    Li, Junqing
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT V, ICIC 2024, 2024, 14879 : 85 - 95
  • [23] Dynamic scheduling for flexible job shop with insufficient transportation resources via graph neural network and deep reinforcement learning
    Zhang, Min
    Wang, Liang
    Qiu, Fusheng
    Liu, Xiaorui
    COMPUTERS & INDUSTRIAL ENGINEERING, 2023, 186
  • [24] A dynamic flexible job shop scheduling method based on collaborative agent reinforcement learning
    Shao, Changshun
    Yu, Zhenglin
    Ding, Hongchang
    Cao, Guohua
    Ding, Kaifang
    Duan, Jingsong
    FLEXIBLE SERVICES AND MANUFACTURING JOURNAL, 2024,
  • [25] Dynamic scheduling for multi-objective flexible job shop via deep reinforcement learning
    Yuan, Erdong
    Wang, Liejun
    Song, Shiji
    Cheng, Shuli
    Fan, Wei
    APPLIED SOFT COMPUTING, 2025, 171
  • [26] Deep reinforcement learning for flexible assembly job shop scheduling problem
    Hu Y.
    Zhang L.
    Bai X.
    Tang Q.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51 (02): : 153 - 160
  • [27] Deep Reinforcement Learning for Dynamic Flexible Job Shop Scheduling with Random Job Arrival
    Chang, Jingru
    Yu, Dong
    Hu, Yi
    He, Wuwei
    Yu, Haoyu
    PROCESSES, 2022, 10 (04)
  • [28] Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning
    Luo, Shu
    APPLIED SOFT COMPUTING, 2020, 91
  • [29] A Deep Reinforcement Learning Method Based on a Transformer Model for the Flexible Job Shop Scheduling Problem
    Xu, Shuai
    Li, Yanwu
    Li, Qiuyang
    ELECTRONICS, 2024, 13 (18)
  • [30] Low-Carbon Flexible Job Shop Scheduling Problem Based on Deep Reinforcement Learning
    Tang, Yimin
    Shen, Lihong
    Han, Shuguang
    SUSTAINABILITY, 2024, 16 (11)