Auto-NFT: Automated Network Function Translator in Virtualized Programmable Data Plane

被引:0
|
作者
Yang, Hyeim [1 ]
Jang, Seokwon [2 ]
Han, Sol [1 ]
Pack, Sangheon [1 ]
机构
[1] Korea Univ, Seoul, South Korea
[2] ETRI, Daejeon, South Korea
来源
IEEE NETWORK | 2023年 / 37卷 / 02期
基金
新加坡国家研究基金会;
关键词
Noise measurement; Switches; Virtualization; Pipelines; Throughput; Virtual machine monitors; Process control;
D O I
10.1109/MNET.003.2100195
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Programmable data plane (PDP) virtualization is a novel technique that enables multiple instances to be supported on a programmable switch. Conventional hypervisor-based virtualization approaches require the hypervisor installation and manual embedding of network functions (NFs), which increases the complexity of PDP virtualization significantly. To address this problem, we propose an automated NF translator (Auto-NFT) that automatically generates and manages the flow rules for a given NF. In this article, we first present background information about the programmable switch and its virtualization. We then describe the design and provide implementation details of Auto-NFT, which was implemented over a commercial programmable switch. The experimental results demonstrate that Auto-NFT outperforms conventional approaches and shows near-optimal performance in terms of the NF embedding success rate and packet processing latency.
引用
收藏
页码:160 / 165
页数:6
相关论文
共 50 条
  • [21] Service Time Minimized Virtualized Network Function Placement for Big Data Processing
    Qi, Xiaogang
    Yang, Wei
    Liu, Lifang
    Gao, Rong
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 1787 - 1791
  • [22] A Survey on In-Network Computing: Programmable Data Plane and Technology Specific Applications
    Kianpisheh, Somayeh
    Taleb, Tarik
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2023, 25 (01): : 701 - 761
  • [23] SPINNER: Enabling In-network Flow Clustering Entirely in a Programmable Data Plane
    Cannarozzo, Luigi
    Morais, Thiago Bortoluzzi
    Severo de Souza, Paulo Silas
    Gobatto, Leonardo Reinehr
    Lamb, Ivan Peter
    Duarte, Pedro Arthur P. R.
    Furlanetto Azambuja, Jose Rodrigo
    Lorenzon, Arthur Francisco
    Rossi, Fabio Diniz
    Cordeiro, Weverton
    Luizelli, Marcelo Caggiani
    PROCEEDINGS OF 2024 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM, NOMS 2024, 2024,
  • [24] Flow-Aware Service Function Embedding Algorithm in Programmable Data Plane
    Lee, Jaewook
    Ko, Haneul
    Lee, Hochan
    Pack, Sangheon
    IEEE ACCESS, 2021, 9 : 6113 - 6121
  • [25] A Programmable Data Plane to Support In-network Data Processing in Software-Defined IoT
    Kim, Ki-Wook
    Min, Sung-Gi
    Han, Youn-Hee
    2017 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY CONVERGENCE (ICTC), 2017, : 855 - 860
  • [26] Energy-efficient auto-scaling of virtualized network function instances based on resource execution pattern
    Mehmood, Asif
    Muhammad, Afaq
    Khan, Talha Ahmed
    Rivera, Javier Jose Diaz
    Iqbal, Javed
    Ul Islam, Ihtesham
    Song, Wang-Cheol
    COMPUTERS & ELECTRICAL ENGINEERING, 2020, 88
  • [27] Accelerating Federated Learning at Programmable User Plane Function via In-Network Aggregation
    Bae, Chanbin
    Lee, Hochan
    Pack, Sangheon
    Ji, Youngmin
    38TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING, ICOIN 2024, 2024, : 218 - 220
  • [28] Network Function Decomposition and Offloading on Heterogeneous Networks with Programmable Data Planes
    Moro, Daniele
    Verticale, Giacomo
    Capone, Antonio
    IEEE Open Journal of the Communications Society, 2021, 2 : 1874 - 1885
  • [29] Network Function Decomposition and Offloading on Heterogeneous Networks With Programmable Data Planes
    Moro, Daniele
    Verticale, Giacomo
    Capone, Antonio
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2021, 2 : 1874 - 1885
  • [30] Flexible sampling-based in-band network telemetry in programmable data plane
    Suh, Dongeun
    Jang, Seokwon
    Han, Sol
    Pack, Sangheon
    Wang, Xiaofei
    ICT EXPRESS, 2020, 6 (01): : 62 - 65