The applications of machine learning techniques in medical data processing based on distributed computing and the Internet of Things

被引:72
|
作者
Aminizadeh, Sarina [1 ]
Heidari, Arash [2 ,3 ]
Toumaj, Shiva [4 ]
Darbandi, Mehdi [5 ]
Navimipour, Nima Jafari [6 ,7 ]
Rezaei, Mahsa [8 ]
Talebi, Samira [9 ]
Azad, Poupak [10 ]
Unal, Mehmet [11 ]
机构
[1] Islamic Azad Univ Tabriz, Med Fac, Tabriz, Iran
[2] Islamic Azad Univ, Dept Comp Engn, Tabriz Branch, Tabriz, Iran
[3] Halic Univ, Dept Software Engn, Istanbul, Turkiye
[4] Urmia Univ Med Sci, Orumiyeh, Iran
[5] Eastern Mediterranean Univ, Dept Elect & Elect Engn, TR-99628 Gazimagusa, Turkiye
[6] Kadir Has Univ, Dept Comp Engn, Istanbul, Turkiye
[7] Natl Yunlin Univ Sci & Technol, Future Technol Res Ctr, Touliu 64002, Yunlin, Taiwan
[8] Tabriz Univ Med Sci, Fac Surg, Tabriz, Iran
[9] Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX USA
[10] Univ Manitoba, Dept Comp Sci, Winnipeg, MB, Canada
[11] Nisantasi Univ, Dept Comp Engn, Istanbul, Turkiye
关键词
Medical data processing; Healthcare data analysis; Deep learning; Distributed computing; COVID-19; PATIENTS; DELIVERY; NETWORK; DISEASE; CONTEXT; SYSTEM; IMPACT; MODEL;
D O I
10.1016/j.cmpb.2023.107745
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Medical data processing has grown into a prominent topic in the latest decades with the primary goal of maintaining patient data via new information technologies, including the Internet of Things (IoT) and sensor technologies, which generate patient indexes in hospital data networks. Innovations like distributed computing, Machine Learning (ML), blockchain, chatbots, wearables, and pattern recognition can adequately enable the collection and processing of medical data for decision-making in the healthcare era. Particularly, to assist experts in the disease diagnostic process, distributed computing is beneficial by digesting huge volumes of data swiftly and producing personalized smart suggestions. On the other side, the current globe is confronting an outbreak of COVID-19, so an early diagnosis technique is crucial to lowering the fatality rate. ML systems are beneficial in aiding radiologists in examining the incredible amount of medical images. Nevertheless, they demand a huge quantity of training data that must be unified for processing. Hence, developing Deep Learning (DL) confronts multiple issues, such as conventional data collection, quality assurance, knowledge exchange, privacy preservation, administrative laws, and ethical considerations. In this research, we intend to convey an inclusive analysis of the most recent studies in distributed computing platform applications based on five categorized platforms, including cloud computing, edge, fog, IoT, and hybrid platforms. So, we evaluated 27 articles regarding the usage of the proposed framework, deployed methods, and applications, noting the advantages, drawbacks, and the applied dataset and screening the security mechanism and the presence of the Transfer Learning (TL) method. As a result, it was proved that most recent research (about 43%) used the IoT platform as the environment for the proposed architecture, and most of the studies (about 46%) were done in 2021. In addition, the most popular utilized DL algorithm was the Convolutional Neural Network (CNN), with a percentage of 19.4%. Hence, despite how technology changes, delivering appropriate therapy for patients is the primary aim of healthcare-associated departments. Therefore, further studies are recommended to develop more functional architectures based on DL and distributed environments and better evaluate the present healthcare data analysis models.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Guest Editorial: Alternative Computing and Machine Learning for Internet of Things
    Firouzi, Farshad
    Farahani, Bahar
    Kahng, Andrew B.
    Rabaey, Jan M.
    Balac, Natasha
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2017, 25 (10) : 2685 - 2687
  • [22] Internet of Things (IOT) Based Machine Learning Techniques for Wind Energy Harvesting
    Kalpana, R.
    Subburaj, V
    Lokanadham, R.
    Amudha, K.
    Bethel, G. N. Beena
    Shukla, Arvind Kumar
    Kshirsagar, Pravin R.
    Rajaram, A.
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2023,
  • [23] Survey On Applications Of Internet Of Things Using Machine Learning
    Majumdar, Namrata
    Shukla, Shipra
    Bhatnagar, Anisha
    2019 9TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2019), 2019, : 562 - 566
  • [24] Advances in Architectures, Big Data, and Machine Learning Techniques for Complex Internet of Things Systems
    Gil, David
    Johnsson, Magnus
    Mora, Higinio
    Szymanski, Julian
    COMPLEXITY, 2019, 2019
  • [25] Survey of Machine Learning based intrusion detection methods for Internet of Medical Things
    Si-Ahmed, Ayoub
    Al-Garadi, Mohammed Ali
    Boustia, Narhimene
    APPLIED SOFT COMPUTING, 2023, 140
  • [26] Intelligent data processing in distributed Internet applications
    Zielosko, B
    Wakulicz-Deja, A
    INTELLIGENT INFORMATION PROCESSING AND WEB MINING, PROCEEDINGS, 2005, : 585 - 591
  • [27] Algorithm and Distributed Computing for the Internet of Things
    Gomez-Pulido, Juan A.
    Sa Silva, Jorge
    Hara, Takahiro
    SENSORS, 2020, 20 (16) : 1 - 5
  • [28] A Semantic Internet of Things Framework using Machine Learning Approach based on Cloud Computing
    Ding, Pei-Wun
    Hsu, I-Ching
    2018 2ND INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (ICDSP 2018), 2018, : 151 - 155
  • [29] Artificial Intelligence Enabled Distributed Edge Computing for Internet of Things Applications
    Fragkos, Georgios
    Tsiropoulou, Eirini Eleni
    Papavassiliou, Symeon
    16TH ANNUAL INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING IN SENSOR SYSTEMS (DCOSS 2020), 2020, : 450 - 457
  • [30] Distributed Message Processing System Based for Internet of Things
    Hao, Hongyu
    Zhang, Jinnan
    Yuan, XueGuang
    Tang, Yu
    Wang, Jinghan
    Zuo, Yong
    Tan, Zebin
    Qiao, Min
    Cao, Yang Hua
    Ai, Lingmei
    Wan, Yihang
    Chen, Hao
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 1686 - 1690