Frequency stabilization of a terahertz quantum-cascade laser to the Lamb dip of a molecular absorption line

被引:4
|
作者
Voigt, R. [1 ]
Wienold, M. [1 ,2 ]
Jayasankar, D. [3 ]
Drakinskiy, V. [3 ]
Stake, J. [2 ,3 ]
Sobis, P. [4 ]
Schrottke, L. [5 ]
Lu, X. [5 ]
Grahn, H. T. [5 ]
Huebers, H-W [1 ,2 ]
机构
[1] German Aerosp Ctr DLR, Inst Opt Sensor Syst, Rutherfordstr 2, D-12489 Berlin, Germany
[2] Humboldt Univ, Dept Phys, Newtonstr 15, D-12489 Berlin, Germany
[3] Chalmers Univ Technol, Dept Microtechnol & Nanosci MC2, Terahertz & Millimeter Wave Lab, S-41296 Gothenburg, Sweden
[4] Low Noise Factory AB, S-41263 Gothenburg, Sweden
[5] Leibniz Inst Forsch Verbund Berlin eV, Paul Drude Inst Festkorperelektron, Hausvogteipl 5-7, D-10117 Berlin, Germany
关键词
PHASE-LOCKING; LINEWIDTH; SPECTROSCOPY; TEMPERATURE;
D O I
10.1364/OE.483883
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate the frequency stabilization of a terahertz quantum-cascade laser (QCL) to the Lamb dip of the absorption line of a D2O rotational transition at 3.3809309 THz. To assess the quality of the frequency stabilization, a Schottky diode harmonic mixer is used to generate a downconverted QCL signal by mixing the laser emission with a multiplied microwave reference signal. This downconverted signal is directly measured by a spectrum analyzer showing a full width at half maximum of 350 kHz, which is eventually limited by high-frequency noise beyond the bandwidth of the stabilization loop.
引用
收藏
页码:13888 / 13894
页数:7
相关论文
共 50 条
  • [41] Spectral Research on an AlGaAs Epitaxial Material for a Terahertz Quantum-cascade Laser
    Tan, Zhi-Yong
    Cao, Jun-Cheng
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2012, 60 (08) : 1267 - 1269
  • [42] Multilayer heterostructures for quantum-cascade lasers operating in the terahertz frequency range
    A. E. Zhukov
    G. E. Cirlin
    R. R. Reznik
    Yu. B. Samsonenko
    A. I. Khrebtov
    M. A. Kaliteevski
    K. A. Ivanov
    N. V. Kryzhanovskaya
    M. V. Maximov
    Zh. I. Alferov
    Semiconductors, 2016, 50 : 662 - 666
  • [43] Correlation between frequency and location on the wafer for terahertz quantum-cascade lasers
    Lu, Xiang
    Roeben, Benjamin
    Schrottke, Lutz
    Biermann, Klaus
    Grahn, Holger T.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2021, 36 (03)
  • [44] Spectral research on an AlGaAs epitaxial material for a terahertz quantum-cascade laser
    Zhi-Yong Tan
    Jun-Cheng Cao
    Journal of the Korean Physical Society, 2012, 60 : 1267 - 1269
  • [45] Fast Reflective Scanning Imaging Based on Terahertz Quantum-Cascade Laser
    Li M.
    Tan Z.
    Qiu F.
    Wan W.
    Wang C.
    Cao J.
    Cao, Juncheng (jccao@mail.sim.ac.cn), 1600, Chinese Optical Society (37):
  • [46] Electrically tunable terahertz quantum-cascade laser with a heterogeneous active region
    Khanna, Suraj P.
    Salih, Mohammed
    Dean, Paul
    Davies, A. Giles
    Linfield, Edmund H.
    APPLIED PHYSICS LETTERS, 2009, 95 (18)
  • [47] A flexible terahertz waveguide for delivery and filtering of quantum-cascade laser radiation
    Nazarov, Maxim
    Shilov, Artur
    Margushev, Zaur
    Bzheumikhov, Kazbek
    Ozheredov, Ilya
    Angeluts, Andrew
    Sotsky, Alexander
    Shkurinov, Alexander
    APPLIED PHYSICS LETTERS, 2018, 113 (13)
  • [48] Wavelength beam-combining of terahertz quantum-cascade laser arrays
    Chen, Ji
    Jin, Yuan
    Gao, Liang
    Reno, John L.
    Kumar, Sushil
    OPTICS LETTERS, 2021, 46 (08) : 1864 - 1867
  • [49] QUANTUM-CASCADE LASERS Optical illumination modulates quantum-cascade laser
    Overton, Gail
    LASER FOCUS WORLD, 2010, 46 (11): : 14 - 15
  • [50] Terahertz quantum-cascade laser with active leaky-wave antenna
    Tavallaee, Amir A.
    Williams, Benjamin S.
    Hon, Philip W. C.
    Itoh, Tatsuo
    Chen, Qi-Sheng
    APPLIED PHYSICS LETTERS, 2011, 99 (14)