Robust Federated Learning With Noisy Labeled Data Through Loss Function Correction

被引:1
|
作者
Chen, Li [1 ]
Ang, Fan [1 ]
Chen, Yunfei [2 ]
Wang, Weidong [1 ]
机构
[1] Univ Sci & Technol China, Dept Elect Engn & Informat Sci, Hefei 230027, Anhui, Peoples R China
[2] Univ Warwick, Sch Engn, Coventry CV4 7AL, England
基金
中国国家自然科学基金;
关键词
Noise measurement; Training; Servers; Data models; Federated learning; Loss measurement; Convergence; Distributed networks; federated learning; label noise; machine learning; non-convex optimization; parallel and distributed algorithms; robust design;
D O I
10.1109/TNSE.2022.3227287
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Federated learning (FL) is a communication efficient machine learning paradigm to leverage distributed data at the network edge. Nevertheless, FL usually fails to train a high-quality model from the networks, where the edge nodes collect noisy labeled data. To tackle this challenge, this paper focuses on developing an innovative robust FL. We consider two kinds of networks with different data distribution. Firstly, we design a reweighted FL under a full-data network, where all edge nodes are equipped with both numerous noisy labeled dataset and small clean dataset. The key idea is that edge devices learn to assign the local weights of loss functions in noisy labeled dataset, and cooperate with central server to update global weights. Secondly, we consider a part-data network where some edge nodes exclude clean dataset, and can not compute the weights locally. The broadcasting of the global weights is added to help those edge nodes without clean dataset to reweight their noisy loss functions. Both designs have a convergence rate of O(1=T-2). Simulation results illustrate that the both proposed training processes improve the prediction accuracy due to the proper weights assignments of noisy loss function.
引用
收藏
页码:1501 / 1511
页数:11
相关论文
共 50 条
  • [21] Distributionally Robust Federated Learning for Differentially Private Data
    Shi, Siping
    Hu, Chuang
    Wang, Dan
    Zhu, Yifei
    Han, Zhu
    2022 IEEE 42ND INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2022), 2022, : 842 - 852
  • [22] Learning from Massive Noisy Labeled Data for Image Classification
    Xiao, Tong
    Xia, Tian
    Yang, Yi
    Huang, Chang
    Wang, Xiaogang
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 2691 - 2699
  • [23] Robust Heterogeneous Federated Learning under Data Corruption
    Fang, Xiuwen
    Ye, Mang
    Yang, Xiyuan
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 4997 - 5007
  • [24] Generalized Zero-Shot Learning with Noisy Labeled Data
    Xu, Liqing
    Liu, Xueliang
    Jiang, Yishun
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT XI, 2024, 14435 : 289 - 300
  • [25] Robust ensemble learning for mining noisy data streams
    Zhang, Peng
    Zhu, Xingquan
    Shi, Yong
    Guo, Li
    Wu, Xindong
    DECISION SUPPORT SYSTEMS, 2011, 50 (02) : 469 - 479
  • [26] HDHRFL: A hierarchical robust federated learning framework for dual-heterogeneous and noisy clients ☆
    Jiang, Yalan
    Wang, Dan
    Song, Bin
    Luo, Shengyang
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 160 : 185 - 196
  • [27] ROBUST LEARNING AT NOISY LABELED MEDICAL IMAGES: APPLIED TO SKIN LESION CLASSIFICATION
    Xue, Cheng
    Dou, Qi
    Shi, Xueying
    Chen, Hao
    Heng, Pheng-Ann
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 1280 - 1283
  • [28] Overcoming Noisy Labels in Federated Learning Through Local Self-Guiding
    Bai, Daokuan
    Wang, Shanshan
    Wang, Wenyue
    Wang, Hua
    Zhao, Chuan
    Yuan, Peng
    Chen, Zhenxiang
    2023 IEEE/ACM 23RD INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING, CCGRID, 2023, : 367 - 376
  • [29] Byzantine-Robust Federated Learning through Dynamic Clustering
    Wang, Hanyu
    Wang, Liming
    Li, Hongjia
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 222 - 230
  • [30] PeerRank: Robust Learning to Rank With Peer Loss Over Noisy Labels
    Wu, Xin
    Liu, Qing
    Qin, Jiarui
    Yu, Yong
    IEEE ACCESS, 2022, 10 : 6830 - 6841