Weighted Gene Co-Expression Network Analysis of Oxymatrine in Psoriasis Treatment

被引:4
|
作者
Xue, Xiaoxiao [1 ]
Guo, Yatao [2 ]
Zhao, Qianying [3 ]
Li, Yongwen [1 ]
Rao, Mi [1 ]
Qi, Wenjing [1 ]
Shi, Huijuan [1 ]
机构
[1] Gen Hosp Ningxia Med Univ, Dept Dermatovenereol, Yinchuan 750004, Peoples R China
[2] Baoji Cent Hosp, Dermatol Dept, Shaanxi 721008, Peoples R China
[3] Gen Hosp Ningxia Med Univ, Med Expt Ctr, Yinchuan 750004, Peoples R China
关键词
enrichment analysis; epidermal differentiation complex; epithelial tissue; homeostasis; EPIDERMAL DIFFERENTIATION COMPLEX; CORNIFIED ENVELOPE; PATHWAY; CANCER; KERATINOCYTE;
D O I
10.2147/JIR.S402535
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Purpose: Psoriasis is a common, chronic, inflammatory, recurrent, immune-mediated skin disease. Oxymatrine is effective for treating moderate and severe psoriasis. Here, transcriptional changes in skin lesions before and after oxymatrine treatment of patients with psoriasis were identified using full-length transcriptome analysis and then compared with those of normal skin tissues.Patients and Methods: Co-expression modules were constructed by combining the psoriasis area and severity index (PASI) score with weighted gene co-expression network analysis to explore the action mechanism of oxymatrine in improving clinical PASI. The expression of selected genes was verified using immunohistochemistry, quantitative real-time PCR, and Western blotting.Results: Kyoto Encyclopedia of Gene and Genome pathway analysis revealed that oxymatrine treatment reversed the abnormal pathways, with an improvement in lesions and a reduction in PASI scores. Gene Ontology (GO) analysis revealed that oxymatrine treatment led to altered GO terms being regulated with a decrease in the PASI score in patients. Therefore, oxymatrine treatment may improve the skin barrier, differentiation of keratinocytes, and alleviate abnormality of organelles such as desmosomes. Protein-protein interaction network interaction analysis revealed that the top five hub genes among many interrelated genes were CNFN, S100A8, SPRR2A, SPRR2D, and SPRR2E, associated with the epidermal differentiation complex (EDC). EDC regulates keratinocyte differ-entiation. This result indicates that oxymatrine treatment can restore keratinocyte differentiation by regulating the expression of EDC-related genes.Conclusion: Oxymatrine can improve erythema, scales, and other clinical symptoms of patients with psoriasis by regulating EDC-related genes and multiple pathways, thereby promoting the repair of epithelial tissue and maintaining the dynamic balance of skin keratosis.
引用
收藏
页码:845 / 859
页数:15
相关论文
共 50 条
  • [21] Weighted gene co-expression network analysis for hub genes in colorectal cancer
    Xu, Zheng
    Wang, Jianing
    Wang, Guosheng
    PHARMACOLOGICAL REPORTS, 2024, 76 (01) : 140 - 153
  • [22] Analysis on Technology Convergence Mechanism Using Weighted Gene Co-expression Network
    Miao, Hong
    Wang, Yan
    Huang, Lucheng
    Wu, Feifei
    Li, Xin
    2018 PORTLAND INTERNATIONAL CONFERENCE ON MANAGEMENT OF ENGINEERING AND TECHNOLOGY (PICMET '18): MANAGING TECHNOLOGICAL ENTREPRENEURSHIP: THE ENGINE FOR ECONOMIC GROWTH, 2018,
  • [23] Assessment of pulmonary fibrosis using weighted gene co-expression network analysis
    Drake, Christina
    Zobl, Walter
    Escher, Sylvia E.
    FRONTIERS IN TOXICOLOGY, 2024, 6
  • [24] Weighted gene co-expression network analysis for hub genes in colorectal cancer
    Zheng Xu
    Jianing Wang
    Guosheng Wang
    Pharmacological Reports, 2024, 76 : 140 - 153
  • [25] Weighted gene co-expression network analysis of hub genes in lung adenocarcinoma
    Luo, Xuan
    Feng, Lei
    Xu, WenBo
    Bai, XueJing
    Wu, MengNa
    EVOLUTIONARY BIOINFORMATICS, 2021, 17
  • [26] DISCOVERING MODULES OF MIRNA CO-EXPRESSION INVOLVED IN CAROTID ATHEROSCLEROSIS BY WEIGHTED GENE CO-EXPRESSION NETWORK ANALYSIS.
    Zarubin, A. A.
    Markov, A. V.
    Sleptcov, A. A.
    Sharysh, D. V.
    Nazarenko, M. S.
    ATHEROSCLEROSIS, 2021, 331 : E220 - E220
  • [27] Identification of signature of gene expression in biliary atresia using weighted gene co-expression network analysis
    Wang, Yongliang
    Yuan, Hongtao
    Zhao, Maojun
    Fang, Li
    MEDICINE, 2022, 101 (37) : E30232
  • [28] Identification of glioblastoma gene prognosis modules based on weighted gene co-expression network analysis
    Pengfei Xu
    Jian Yang
    Junhui Liu
    Xue Yang
    Jianming Liao
    Fanen Yuan
    Yang Xu
    Baohui Liu
    Qianxue Chen
    BMC Medical Genomics, 11
  • [29] Weighted gene co-expression network analysis of microarray mRNA expression profiling in response to electroacupuncture
    Mohammadnejad, Afsaneh
    Li, Shuxia
    Duan, Hongmei
    Lund, Jesper
    Li, Weilong
    Baumbach, Jan
    Tan, Qihua
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 1876 - 1883
  • [30] Identification of co-expression network correlated with different periods of adipogenic and osteogenic differentiation of BMSCs by weighted gene co-expression network analysis (WGCNA)
    Yu Liu
    Markus Tingart
    Sophie Lecouturier
    Jianzhang Li
    Jörg Eschweiler
    BMC Genomics, 22