A Low-Power V-Band Radar Transceiver Front-End Chip Using 1.5 V Supply in 130-nm SiGe BiCMOS

被引:6
|
作者
Sutbas, Batuhan [1 ,2 ]
Ng, Herman Jalli [3 ]
Eissa, Mohamed Hussein [1 ]
Kahmen, Gerhard [1 ,2 ]
机构
[1] Leibniz Inst Innovat Mikroelekt IHP, D-15236 Frankfurt an der Oder, Germany
[2] Brandenburg Tech Univ Cottbus, Inst Elect Engn & Informat Sci, D-03046 Cottbus, Germany
[3] Karlsruhe Univ Appl Sci, Fac Elect Engn & Informat Technol, D-76133 Karlsruhe, Germany
关键词
Radar; Silicon germanium; Radio frequency; Radar tracking; Power demand; BiCMOS integrated circuits; Transceivers; Continuous-wave (CW) radar; frequency-modulated CW (FMCW) radar; integrated circuit; low-power; low-voltage; medical sensor; millimeter-wave (mm-wave); silicon-germanium (SiGe); transceiver (TRX); vital sign detection; FREQUENCY DOUBLER; MILLIMETER-WAVE; FMCW RADAR; DESIGN;
D O I
10.1109/TMTT.2023.3269519
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Energy-efficient, low-voltage, and low-power millimeter-wave (mm-wave) radars are gaining increasing attention for battery-powered commercial applications. In this article, the design of a low-power V-band radar sensor based on a transceiver (TRX) front-end chip using 1.5 V supply in an advanced SiGe BiCMOS technology with 300 GHz f(T) and 500 GHz f(max) is presented. The monostatic front-end chip utilizes low-voltage low-power circuit-level design techniques to achieve measured 9-dBm transmitter (TX) output power and 27-dB receiver (RX) gain with a simulated 3.8-dB noise figure (NF) consuming a total of only 72 mW in continuous mode. The TRX chip is used to build a radar sensor, which is experimentally verified in an anechoic chamber. The low-power sensor achieves a 46-dB dynamic range and a ranging precision better than 3.4 mu m measured with a static target at 1 m. Phase measurements using the low-power radar in the continuous-wave (CW) mode demonstrate that submillimeter movements can be tracked, and notably main vital parameters of a human can be determined accurately. Experimental results show that the performance of the proposed low-power TRX front-end chip is very competitive with designs in modern CMOS technologies.
引用
收藏
页码:4855 / 4868
页数:14
相关论文
共 50 条
  • [31] X-Band 130-nm CMOS transceiver front-end with a broadband attenuator design for phased-array systems
    Pang, Dongwei
    Wu, Shiwei
    Wang, Yan
    Gui, Yongfeng
    Duan, Zongming
    Wang, Gang
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2024, 66 (04)
  • [32] Ultralow-Power W-Band Low-Noise Amplifier Design in 130-nm SiGe BiCMOS
    Smirnova, Kateryna
    Bohn, Christian
    Kaynak, Mehmet
    Ulusoy, Ahmet Cagri
    IEEE MICROWAVE AND WIRELESS TECHNOLOGY LETTERS, 2023, 33 (08): : 1171 - 1174
  • [33] 15-GHz-Band Low-Power and Low Phase-Noise LC VCO IC with A Second Harmonic Filter in 130-nm SiGe BiCMOS
    Xiao, Xu
    Wang, Xinyi
    Yoshimasu, Toshihiko
    PROCEEDINGS OF THE 2016 IEEE REGION 10 CONFERENCE (TENCON), 2016, : 2525 - 2527
  • [34] Highly Linear Low Power V-Band Down-Conversion Mixer in SiGe BiCMOS Technology
    Marvi, Zahra
    Ashoori, Ehsan
    2020 IEEE RADIO AND WIRELESS SYMPOSIUM (RWS 2020), 2020, : 159 - 161
  • [35] 80-GHz-band low-power sub-harmonic mixer IC with a bottom-LO-configuration in 130-nm SiGe BiCMOS
    Yang, Xin
    Xu, Xiao
    Shibata, Takayuki
    Yoshimasu, Toshihiko
    INTERNATIONAL JOURNAL OF MICROWAVE AND WIRELESS TECHNOLOGIES, 2016, 8 (4-5) : 703 - 712
  • [36] An Ultra-Low-Power Dual-Polarization Transceiver Front-End for 94-GHz Phased Arrays in 130-nm InP HBT
    Kim, Seong-Kyun
    Maurer, Robert
    Simsek, Arda
    Urteaga, Miguel
    Rodwell, Mark J. W.
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2017, 52 (09) : 2267 - 2276
  • [37] A Low Power Ka-Band Receiver Front-End in 0.13μm SiGe BiCMOS for Space Transponders
    Aflatouni, Firooz
    Hashemi, Hossein
    2009 ANNUAL IEEE COMPOUND SEMICONDUCTOR INTEGRATED CIRCUIT SYMPOSIUM - 2009 IEEE CSIC SYMPOSIUM, TECHNICAL DIGEST 2009, 2009, : 195 - 198
  • [38] A 90-nm CMOS V-Band Low-Power Image-Reject Receiver Front-End With High-Speed Auto-Wake-Up and Gain Controls
    Hsieh, Jian-Yu
    Wang, Tao
    Lu, Shey-Shi
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2016, 64 (02) : 541 - 549
  • [39] A Low-Power K-Band Colpitts VCO with 30% Tuning Range in a 130 nm SiGe BiCMOS Technology
    Jamal, Farabi Ibne
    Wessel, Jan
    Kissinger, Dietmar
    2018 IEEE 18TH TOPICAL MEETING ON SILICON MONOLITHIC INTEGRATED CIRCUITS IN RF SYSTEMS (SIRF), 2018, : 37 - 40
  • [40] Low Power Analog Front-End Circuits in 130-nm CMOS for Multi-Standard Zero-IF Receivers
    Jang, Seunghyun
    Lee, Junsang
    Choi, Joongho
    Lee, Kwang-Chun
    2010 EUROPEAN MICROWAVE INTEGRATED CIRCUITS CONFERENCE (EUMIC), 2010, : 373 - 376