Graph neural network recommendation algorithm based on improved dual tower model

被引:2
|
作者
He, Qiang [1 ]
Li, Xinkai [2 ]
Cai, Biao [2 ,3 ]
机构
[1] Chengdu Univ Technol, Sch Mech & Elect Engn, Chengdu 610059, Peoples R China
[2] Chengdu Univ Technol, Sch Comp Sci & Cyber Secur, Chengdu 610059, Peoples R China
[3] Chengdu Univ Technol, Coll Ind Technol, Yibin 644000, Peoples R China
基金
中国国家自然科学基金;
关键词
Recommendation; Dual tower model; Graph neural network; Collaborative filtering; MATRIX FACTORIZATION;
D O I
10.1038/s41598-024-54376-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this era of information explosion, recommendation systems play a key role in helping users to uncover content of interest among massive amounts of information. Pursuing a breadth of recall while maintaining accuracy is a core challenge for current recommendation systems. In this paper, we propose a new recommendation algorithm model, the interactive higher-order dual tower (IHDT), which improves current models by adding interactivity and higher-order feature learning between the dual tower neural networks. A heterogeneous graph is constructed containing different types of nodes, such as users, items, and attributes, extracting richer feature representations through meta-paths. To achieve feature interaction, an interactive learning mechanism is introduced to inject relevant features between the user and project towers. Additionally, this method utilizes graph convolutional networks for higher-order feature learning, pooling the node embeddings of the twin towers to obtain enhanced end-user and item representations. IHDT was evaluated on the MovieLens dataset and outperformed multiple baseline methods. Ablation experiments verified the contribution of interactive learning and high-order GCN components.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Robust social recommendation based on contrastive learning and dual-stage graph neural network
    Ma, Gang-Feng
    Yang, Xu-Hua
    Long, Haixia
    Zhou, Yanbo
    Xu, Xin-Li
    NEUROCOMPUTING, 2024, 584
  • [42] RG-GCN: Improved Graph Convolution Neural Network Algorithm Based on Rough Graph
    Ding, Weiping
    Pan, Bairu
    Ju, Hengrong
    Huang, Jiashuang
    Cheng, Chun
    Shen, Xinjie
    Geng, Yu
    Hou, Tao
    IEEE ACCESS, 2022, 10 : 85582 - 85594
  • [43] Link Prediction Algorithm Based On Dual-channel Graph Neural Network
    Fang, Shiyu
    Li, Longjie
    Chen, Xiaoyun
    Zhang, Qun
    Chen, Haiwen
    Yu, Lianfei
    Liu, Jiaxuan
    2024 10TH INTERNATIONAL CONFERENCE ON BIG DATA AND INFORMATION ANALYTICS, BIGDIA 2024, 2024, : 887 - 894
  • [44] CapsRec: A Capsule Graph Neural Network Model for Social Recommendation
    Liu, Peizhen
    Yu, Wen
    2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021), 2021, : 359 - 363
  • [45] Classification Model for Scholarly Articles Based on Improved Graph Neural Network
    Xuejian H.
    Yuyang L.
    Tinghuai M.
    Data Analysis and Knowledge Discovery, 2022, 6 (10) : 93 - 102
  • [46] Graph neural network based model for multi-behavior session-based recommendation
    Bo Yu
    Ruoqian Zhang
    Wei Chen
    Junhua Fang
    GeoInformatica, 2022, 26 : 429 - 447
  • [47] Graph neural network based model for multi-behavior session-based recommendation
    Yu, Bo
    Zhang, Ruoqian
    Chen, Wei
    Fang, Junhua
    GEOINFORMATICA, 2022, 26 (02) : 429 - 447
  • [48] A personalized recommendation algorithm for online teaching resources of vocal music based on graph neural network
    Wang L.
    Applied Mathematics and Nonlinear Sciences, 2024, 9 (01)
  • [49] GNNRec: gated graph neural network for session-based social recommendation model
    Liu, Chun
    Li, Yuxiang
    Lin, Hong
    Zhang, Chaojie
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2023, 60 (01) : 137 - 156
  • [50] GNNRec: gated graph neural network for session-based social recommendation model
    Chun Liu
    Yuxiang Li
    Hong Lin
    Chaojie Zhang
    Journal of Intelligent Information Systems, 2023, 60 : 137 - 156