3D human pose detection using nano sensor and multi-agent deep reinforcement learning

被引:2
|
作者
Sun, Yangjie [1 ]
Che, Xiaoxi [1 ]
Zhang, Nan [1 ]
机构
[1] Beijing Univ Technol, Dept Phys Educ, Beijing 100124, Peoples R China
关键词
pose detection; EMG signal; feature extraction; nano sensor; multi-agent deep reinforcement learning; pose solution; ACTION RECOGNITION; POSTURE DETECTION; NETWORK; HYBRID;
D O I
10.3934/mbe.2023230
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Due to the complexity of three-dimensional (3D) human pose, it is difficult for ordinary sensors to capture subtle changes in pose, resulting in a decrease in the accuracy of 3D human pose detection. A novel 3D human motion pose detection method is designed by combining Nano sensors and multi-agent deep reinforcement learning technology. First, Nano sensors are placed in key parts of the human to collect human electromyogram (EMG) signals. Second, after de-noising the EMG signal by blind source separation technology, the time-domain and frequency-domain features of the surface EMG signal are extracted. Finally, in the multi-agent environment, the deep reinforcement learning network is introduced to build the multi-agent deep reinforcement learning pose detection model, and the 3D local pose of the human is output according to the features of the EMG signal. The fusion and pose calculation of the multi-sensor pose detection results are performed to obtain the 3D human pose detection results. The results show that the proposed method has high accuracy for detecting various human poses, and the accuracy, precision, recall and specificity of 3D human pose detection results are 0.97, 0.98, 0.95 and 0.98, respectively. Compared with other methods, the detection results in this paper are more accurate, and can be widely used in medicine, film, sports and other fields.
引用
收藏
页码:4970 / 4987
页数:18
相关论文
共 50 条
  • [21] A review of cooperative multi-agent deep reinforcement learning
    Afshin Oroojlooy
    Davood Hajinezhad
    Applied Intelligence, 2023, 53 : 13677 - 13722
  • [22] Experience Selection in Multi-Agent Deep Reinforcement Learning
    Wang, Yishen
    Zhang, Zongzhang
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 864 - 870
  • [23] Multi-Agent Deep Reinforcement Learning with Emergent Communication
    Simoes, David
    Lau, Nuno
    Reis, Luis Paulo
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [24] Sparse communication in multi-agent deep reinforcement learning
    Han, Shuai
    Dastani, Mehdi
    Wang, Shihan
    NEUROCOMPUTING, 2025, 625
  • [25] Cooperative Exploration for Multi-Agent Deep Reinforcement Learning
    Liu, Iou-Jen
    Jain, Unnat
    Yeh, Raymond A.
    Schwing, Alexander G.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [26] Competitive Evolution Multi-Agent Deep Reinforcement Learning
    Zhou, Wenhong
    Chen, Yiting
    Li, Jie
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2019), 2019,
  • [27] Strategic Interaction Multi-Agent Deep Reinforcement Learning
    Zhou, Wenhong
    Li, Jie
    Chen, Yiting
    Shen, Lin-Cheng
    IEEE ACCESS, 2020, 8 : 119000 - 119009
  • [28] A review of cooperative multi-agent deep reinforcement learning
    Oroojlooy, Afshin
    Hajinezhad, Davood
    APPLIED INTELLIGENCE, 2023, 53 (11) : 13677 - 13722
  • [29] Multi-Agent Deep Reinforcement Learning for Walker Systems
    Park, Inhee
    Moh, Teng-Sheng
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 490 - 495
  • [30] Action Markets in Deep Multi-Agent Reinforcement Learning
    Schmid, Kyrill
    Belzner, Lenz
    Gabor, Thomas
    Phan, Thomy
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT II, 2018, 11140 : 240 - 249