3D human pose detection using nano sensor and multi-agent deep reinforcement learning

被引:2
|
作者
Sun, Yangjie [1 ]
Che, Xiaoxi [1 ]
Zhang, Nan [1 ]
机构
[1] Beijing Univ Technol, Dept Phys Educ, Beijing 100124, Peoples R China
关键词
pose detection; EMG signal; feature extraction; nano sensor; multi-agent deep reinforcement learning; pose solution; ACTION RECOGNITION; POSTURE DETECTION; NETWORK; HYBRID;
D O I
10.3934/mbe.2023230
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Due to the complexity of three-dimensional (3D) human pose, it is difficult for ordinary sensors to capture subtle changes in pose, resulting in a decrease in the accuracy of 3D human pose detection. A novel 3D human motion pose detection method is designed by combining Nano sensors and multi-agent deep reinforcement learning technology. First, Nano sensors are placed in key parts of the human to collect human electromyogram (EMG) signals. Second, after de-noising the EMG signal by blind source separation technology, the time-domain and frequency-domain features of the surface EMG signal are extracted. Finally, in the multi-agent environment, the deep reinforcement learning network is introduced to build the multi-agent deep reinforcement learning pose detection model, and the 3D local pose of the human is output according to the features of the EMG signal. The fusion and pose calculation of the multi-sensor pose detection results are performed to obtain the 3D human pose detection results. The results show that the proposed method has high accuracy for detecting various human poses, and the accuracy, precision, recall and specificity of 3D human pose detection results are 0.97, 0.98, 0.95 and 0.98, respectively. Compared with other methods, the detection results in this paper are more accurate, and can be widely used in medicine, film, sports and other fields.
引用
收藏
页码:4970 / 4987
页数:18
相关论文
共 50 条
  • [1] Multi-Agent Deep Reinforcement Learning for Online 3D Human Poses Estimation
    Fan, Zhen
    Li, Xiu
    Li, Yipeng
    REMOTE SENSING, 2021, 13 (19)
  • [2] Multi-Agent Deep Reinforcement Learning with Human Strategies
    Thanh Nguyen
    Ngoc Duy Nguyen
    Nahavandi, Saeid
    2019 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2019, : 1357 - 1362
  • [3] Multi-Agent Cooperative Reinforcement Learning in 3D Virtual World
    Zhang, Ping
    Ma, Xiujun
    Pan, Zijian
    Li, Xiong
    Xie, Kunqing
    ADVANCES IN SWARM INTELLIGENCE, PT 1, PROCEEDINGS, 2010, 6145 : 731 - 739
  • [4] Decentralized Multi-Agent Pursuit Using Deep Reinforcement Learning
    de Souza, Cristino, Jr.
    Newbury, Rhys
    Cosgun, Akansel
    Castillo, Pedro
    Vidolov, Boris
    Kulic, Dana
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (03): : 4552 - 4559
  • [5] HALFTONING WITH MULTI-AGENT DEEP REINFORCEMENT LEARNING
    Jiang, Haitian
    Xiong, Dongliang
    Jiang, Xiaowen
    Yin, Aiguo
    Ding, Li
    Huang, Kai
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 641 - 645
  • [6] Deep reinforcement learning for multi-agent interaction
    Ahmed, Ibrahim H.
    Brewitt, Cillian
    Carlucho, Ignacio
    Christianos, Filippos
    Dunion, Mhairi
    Fosong, Elliot
    Garcin, Samuel
    Guo, Shangmin
    Gyevnar, Balint
    McInroe, Trevor
    Papoudakis, Georgios
    Rahman, Arrasy
    Schafer, Lukas
    Tamborski, Massimiliano
    Vecchio, Giuseppe
    Wang, Cheng
    Albrecht, Stefano, V
    AI COMMUNICATIONS, 2022, 35 (04) : 357 - 368
  • [7] Multi-agent deep reinforcement learning: a survey
    Sven Gronauer
    Klaus Diepold
    Artificial Intelligence Review, 2022, 55 : 895 - 943
  • [8] Deep Multi-Agent Reinforcement Learning: A Survey
    Liang X.-X.
    Feng Y.-H.
    Ma Y.
    Cheng G.-Q.
    Huang J.-C.
    Wang Q.
    Zhou Y.-Z.
    Liu Z.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (12): : 2537 - 2557
  • [9] Lenient Multi-Agent Deep Reinforcement Learning
    Palmer, Gregory
    Tuyls, Karl
    Bloembergen, Daan
    Savani, Rahul
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), 2018, : 443 - 451
  • [10] Multi-agent deep reinforcement learning: a survey
    Gronauer, Sven
    Diepold, Klaus
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (02) : 895 - 943