Effect of EVA Polymer and PVA Fiber on the Mechanical Properties of Ultra-High Performance Engineered Cementitious Composites

被引:4
|
作者
Yan, Feifei [1 ]
Zhang, Peng [1 ]
Xu, Fang [1 ]
Tan, Wufeiyu [1 ]
机构
[1] China Univ Geosci, Fac Engn, Wuhan 430074, Peoples R China
关键词
cable channel; ultra-high performance engineered cementitious composites UHP-ECC; EVA polymer; PVA fiber; mechanical properties; SEM micromechanism;
D O I
10.3390/ma16062414
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In order to study the mechanical properties of ultra-high performance engineered cementitious composites (UHP-ECC) used for cable channel repair, orthogonal tests were carried out with four influencing factors, water binder ratio, silica fume, fly ash and mortar ratio, to obtain the optimum mix ratio of the cement paste. On this basis, the effects of ethylene-vinyl acetate (EVA) polymer and polyvinyl alcohol (PVA) fiber on the fluidity, flexural strength and compressive strength of UHP-ECC were studied, and the micromechanism was analyzed with SEM. The results show that the fluidity of UHP-ECC material prepared was 170-200 mm, which meets the requirements of working performance. The average compressive strength at 28 days reached 85.3 MPa, and the average flexural strength at 28 days reached 22.3 MPa. EVA polymer has a fast film forming rate in an alkaline environment. The formed polymer film wraps the fiber, enhances the bridging role between the fiber and the matrix and increases the viscosity of the material. Therefore, the early flexural strength is significantly improved. The 1-d flexural strength of UHP-ECC material mixed with 9-mm fiber is increased by 18%, and the 1-d flexural strength of 3-mm fiber is increased by 15%. Due to PVA fiber's high elastic modulus and tensile strength, it improved the flexural and tensile properties of the material after incorporation, especially in the later stages; the 28-d flexural strength of UHP-ECC material mixed with 9-mm fiber increased by 12%, and the 28-d flexural strength of 3-mm fiber increased by 7%. It was concluded that the effect of 9-mm PVA fiber is better than that of 3 mm PVA fiber.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Rate-dependent tensile properties of ultra-high performance engineered cementitious composites (UHP-ECC)
    Yu, Ke-Quan
    Dai, Jian-Guo
    Lu, Zhou-Dao
    Poon, Chi-Sun
    CEMENT & CONCRETE COMPOSITES, 2018, 93 : 218 - 234
  • [22] Effect of polyethylene fiber content on physical and mechanical properties of engineered cementitious composites
    Wang, Yichao
    Liu, Feichi
    Yu, Jiangtao
    Dong, Fangyuan
    Ye, Junhong
    Construction and Building Materials, 2020, 251
  • [23] Mechanical properties of PVA fiber reinforced cementitious composites (PVA-FRCC) after high temperature
    Wang, Dawei
    Yang, Yuanpin
    Yu, Zhaoyang
    Liu, Runqing
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2024, 21
  • [24] Effect of polyethylene fiber content on physical and mechanical properties of engineered cementitious composites
    Wang, Yichao
    Liu, Feichi
    Yu, Jiangtao
    Dong, Fangyuan
    Ye, Junhong
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 251
  • [25] Experimental research on mechanical properties of desert sand steel-PVA fiber engineered cementitious composites
    Jialing C.
    Quanwei L.
    Minggin L.
    Dan W.
    1600, Scientific and Technological Corporation (24): : 584 - 592
  • [26] Effect of moisture content on mechanical behavior of ultra-high toughness cementitious composites
    Zhao, Xin
    Zheng, Lian
    Liu, Jintao
    Cai, Lei
    Wu, Hao
    JOURNAL OF BUILDING ENGINEERING, 2023, 76
  • [27] Influence of rice husk ash on the mechanical properties of ultra-high strength engineered cementitious composites (UHS-ECC)
    Liu, Feifei
    Jin, Baohong
    He, Qi
    Zhou, Yun
    PLOS ONE, 2024, 19 (04):
  • [28] Size Effect of Mechanical Properties of Hybrid Fiber Ultra-high Performance Concrete
    Wang L.
    Chi Y.
    Xu L.
    Liu S.
    Yin C.
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2022, 25 (08): : 781 - 788
  • [29] Dynamic mechanical properties of basalt fiber engineered cementitious composites
    Zhang N.
    Zhou J.
    Xu M.
    Li H.
    Ma G.
    Baozha Yu Chongji/Explosion and Shock Waves, 2020, 40 (05):
  • [30] Influence of cyclic loading on the tensile fracture characteristics of ultra-high performance engineered cementitious composites
    Zhou, Yingwu
    Zhong, Qianli
    Xing, Feng
    Sui, Lili
    Huang, Zhenyu
    Guo, Menghuan
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 240