Optimal Control, Contact Dynamics and Herglotz Variational Problem

被引:10
|
作者
de Leon, Manuel [1 ,2 ]
Lainz, Manuel [1 ]
Munoz-Lecanda, Miguel C. [3 ]
机构
[1] Inst Ciencias Matemat CSIC UAM UC3M UCM, Madrid, Spain
[2] Real Acad Ciencias Exactas Fis & Nat, Madrid, Spain
[3] Univ Politecn Cataluna, Dept Math, Barcelona, Spain
关键词
Contact Hamioltonian systems; Optimal control; Herglotz principle; Presymplectic systems; Pontryagin maximum principle; MECHANICAL SYSTEMS; CONSTRAINTS; SYMMETRIES;
D O I
10.1007/s00332-022-09861-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we combine two main topics in mechanics and optimal control theory: contact Hamiltonian systems and Pontryagin maximum principle. As an important result, among others, we develop a contact Pontryagin maximum principle that permits to deal with optimal control problems with dissipation. We also consider the Herglotz optimal control problem, which is simultaneously a generalization of the Herglotz variational principle and an optimal control problem. An application to the study of a thermodynamic system is provided.
引用
收藏
页数:46
相关论文
共 50 条
  • [31] Variational problem of Herglotz type for Birkhoffian system and its Noether's theorems
    Zhang, Yi
    ACTA MECHANICA, 2017, 228 (04) : 1481 - 1492
  • [32] Numerical integration of stochastic contact Hamiltonian systems via stochastic Herglotz variational principle
    Zhan, Qingyi
    Duan, Jinqiao
    Li, Xiaofan
    Li, Yuhong
    PHYSICA SCRIPTA, 2023, 98 (05)
  • [33] On the optimal control of parabolic variational inequalities, the evolution dam problem
    Sweilam, NH
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1997, 18 (7-8) : 843 - 855
  • [34] Variational analysis and optimal control of dynamic unilateral contact models with friction
    Han, Jiangfeng
    Zeng, Huidan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 473 (02) : 712 - 748
  • [35] Boundary optimal control of a dynamic frictional contact problem
    Peng, Zijia
    Gamorski, Piotr
    Migorski, Stanislaw
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2020, 100 (10):
  • [36] Optimal control of a two-dimensional contact problem
    Sofonea, Mircea
    Benraouda, Ahlem
    Hechaichi, Hadjer
    APPLICABLE ANALYSIS, 2018, 97 (08) : 1281 - 1298
  • [37] Optimal control of a frictionless contact problem with normal compliance
    Touzaline, Arezki
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2018, 59 (03): : 327 - 342
  • [38] Boundary optimal control of a nonsmooth frictionless contact problem
    Sofonea, Mircea
    Xiao, Yi-bin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (01) : 152 - 165
  • [39] Optimal control of a frictional contact problem with unilateral constraints
    Guettaf, Rachid
    Touzaline, Arezki
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2024, 69 (04): : 913 - 925
  • [40] OPTIMAL CONTROL OF A FRICTIONAL CONTACT PROBLEM FOR LOCKING MATERIALS
    Guettaf, Rachid
    Touzaline, Arezki
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2025, 29 (564): : 243 - 259