Semantic Disentanglement Adversarial Hashing for Cross-Modal Retrieval

被引:9
|
作者
Meng, Min [1 ]
Sun, Jiaxuan [1 ]
Liu, Jigang [2 ]
Yu, Jun [1 ]
Wu, Jigang [1 ]
机构
[1] Guangdong Univ Technol, Sch Comp Sci, Guangzhou 510006, Peoples R China
[2] Ping An Life Insurance China, Shenzhen 518046, Peoples R China
基金
中国国家自然科学基金;
关键词
Cross-modal retrieval; hashing; adversarial learning; disentangled representation; REPRESENTATION; NETWORK;
D O I
10.1109/TCSVT.2023.3293104
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Cross-modal hashing has gained considerable attention in cross-modal retrieval due to its low storage cost and prominent computational efficiency. However, preserving more semantic information in the compact hash codes to bridge the modality gap still remains challenging. Most existing methods unconsciously neglect the influence of modality-private information on semantic embedding discrimination, leading to unsatisfactory retrieval performance. In this paper, we propose a novel deep cross-modal hashing method, called Semantic Disentanglement Adversarial Hashing (SDAH), to tackle these challenges for cross-modal retrieval. Specifically, SDAH is designed to decouple the original features of each modality into modality-common features with semantic information and modality-private features with disturbing information. After the preliminary decoupling, the modality-private features are shuffled and treated as positive interactions to enhance the learning of modality-common features, which can significantly boost the discriminative and robustness of semantic embeddings. Moreover, the variational information bottleneck is introduced in the hash feature learning process, which can avoid the loss of a large amount of semantic information caused by the high-dimensional feature compression. Finally, the discriminative and compact hash codes can be computed directly from the hash features. A large number of comparative and ablation experiments show that SDAH achieves superior performance than other state-of-the-art methods.
引用
收藏
页码:1914 / 1926
页数:13
相关论文
共 50 条
  • [41] Latent semantic-enhanced discrete hashing for cross-modal retrieval
    Yun Liu
    Shujuan Ji
    Qiang Fu
    Jianli Zhao
    Zhongying Zhao
    Maoguo Gong
    Applied Intelligence, 2022, 52 : 16004 - 16020
  • [42] Robust Asymmetric Cross-Modal Hashing Retrieval With Dual Semantic Enhancement
    Teng, Shaohua
    Xu, Tuhong
    Zheng, Zefeng
    Wu, Naiqi
    Zhang, Wei
    Teng, Luyao
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (03) : 4340 - 4353
  • [43] Latent semantic-enhanced discrete hashing for cross-modal retrieval
    Liu, Yun
    Ji, Shujuan
    Fu, Qiang
    Zhao, Jianli
    Zhao, Zhongying
    Gong, Maoguo
    APPLIED INTELLIGENCE, 2022, 52 (14) : 16004 - 16020
  • [44] Semantic-alignment transformer and adversary hashing for cross-modal retrieval
    Sun, Yajun
    Wang, Meng
    Ma, Ying
    APPLIED INTELLIGENCE, 2024, 54 (17-18) : 7581 - 7602
  • [45] Robust online hashing with label semantic enhancement for cross-modal retrieval
    Li, Li
    Shu, Zhenqiu
    Yu, Zhengtao
    Wu, Xiao-Jun
    PATTERN RECOGNITION, 2024, 145
  • [46] Efficient discrete latent semantic hashing for scalable cross-modal retrieval
    Lu, Xu
    Zhu, Lei
    Cheng, Zhiyong
    Song, Xuemeng
    Zhang, Huaxiang
    SIGNAL PROCESSING, 2019, 154 : 217 - 231
  • [47] Label-Based Deep Semantic Hashing for Cross-Modal Retrieval
    Weng, Weiwei
    Wu, Jiagao
    Yang, Lu
    Liu, Linfeng
    Hu, Bin
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT III, 2019, 11955 : 24 - 36
  • [48] Scalable semantic-enhanced supervised hashing for cross-modal retrieval
    Yang, Fan
    Ding, Xiaojian
    Liu, Yufeng
    Ma, Fumin
    Cao, Jie
    KNOWLEDGE-BASED SYSTEMS, 2022, 251
  • [49] Category correlations embedded semantic centers hashing for cross-modal retrieval
    Fan, Wentao
    Yang, Chenwen
    Luo, Kaiyi
    Zhang, Min
    Li, Huaxiong
    INFORMATION SCIENCES, 2024, 683
  • [50] Modal-adversarial Semantic Learning Network for Extendable Cross-modal Retrieval
    Xu, Xing
    Song, Jingkuan
    Lu, Huimin
    Yang, Yang
    Shen, Fumin
    Huang, Zi
    ICMR '18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2018, : 46 - 54