Li-Rich Mn-Based Cathode Materials for Li-Ion Batteries: Progress and Perspective

被引:2
|
作者
Guo, Weibin [1 ,2 ,3 ]
Weng, Zhangzhao [1 ,2 ]
Zhou, Chongyang [1 ,2 ]
Han, Min [1 ,2 ]
Shi, Naien [1 ,2 ]
Xie, Qingshui [3 ]
Peng, Dong-Liang [3 ]
机构
[1] Fujian Normal Univ, Strait Inst Flexible Elect SIFE, Future Technol, Fuzhou 350117, Peoples R China
[2] Strait Lab Flexible Elect SLoFE, Fuzhou 350117, Peoples R China
[3] Xiamen Univ, Coll Mat, State Key Lab Phys Chem Solid Surface, Fujian Key Lab Surface & Interface Engn High Perfo, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Li-rich Mn-based cathode materials; anionic redox activity; modification strategy; lithium-ion batteries; X-RAY-DIFFRACTION; POSITIVE-ELECTRODE MATERIALS; MANGANESE OXIDE ELECTRODES; ELECTROCHEMICAL PERFORMANCE; STRUCTURAL STABILITY; SURFACE MODIFICATION; ORTHORHOMBIC LIMNO2; RECHARGEABLE CELLS; LITHIUM INSERTION; OXYGEN VACANCIES;
D O I
10.3390/inorganics12010008
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The development of cathode materials with high specific capacity is the key to obtaining high-performance lithium-ion batteries, which are crucial for the efficient utilization of clean energy and the realization of carbon neutralization goals. Li-rich Mn-based cathode materials (LRM) exhibit high specific capacity because of both cationic and anionic redox activity and are expected to be developed and applied as cathode materials for a new generation of high-energy density lithium-ion batteries. Nevertheless, the difficulty of regulating anionic redox reactions poses significant challenges to LRM, such as low initial Coulombic efficiency, poor rate capability, and fast cycling capacity and voltage decay. To address the existing challenges of LRM, this review introduces their basic physicochemical characteristics in detail, analyzes the original causes of these challenges, focuses on the recent progress of the modification strategies, and then especially discusses the development prospects of LRM from different aspects.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] High-entropy Li-rich layered oxide cathode for Li-ion batteries
    Kim, Jaemin
    Yang, Songge
    Zhong, Yu
    Tompsett, Geoffrey
    Jeong, Seonghun
    Mun, Junyoung
    Sunariwal, Neelam
    Cabana, Jordi
    Yang, Zhenzhen
    Wang, Yan
    JOURNAL OF POWER SOURCES, 2025, 628
  • [32] Ion-Exchange: A Promising Strategy to Design Li-Rich and Li-Excess Layered Cathode Materials for Li-Ion Batteries
    Cao, Xin
    Qiao, Yu
    Jia, Min
    He, Ping
    Zhou, Haoshen
    ADVANCED ENERGY MATERIALS, 2022, 12 (04)
  • [33] Defective layered Mn-based cathode materials with excellent performance via ion exchange for Li-ion batteries
    Yongheng Si
    Kun Bai
    Yaxin Wang
    Han Lu
    Litong Liu
    Ziyan Long
    Yujuan Zhao
    Journal of Energy Chemistry , 2023, (07) : 537 - 546
  • [34] Rational construction of graphitic carbon nitride composited Li-rich Mn-based oxide cathode materials toward high-performance Li-ion battery
    Ji, Yu-Rui
    Chen, Yu-Hao
    Wang, Peng-Fei
    Lai, Qin-Zhi
    Qiu, Feilong
    Zhu, Yan-Rong
    Yi, Ting-Feng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 652 : 577 - 589
  • [35] Defective layered Mn-based cathode materials with excellent performance via ion exchange for Li-ion batteries
    Si, Yongheng
    Bai, Kun
    Wang, Yaxin
    Lu, Han
    Liu, Litong
    Long, Ziyan
    Zhao, Yujuan
    JOURNAL OF ENERGY CHEMISTRY, 2023, 82 : 537 - 546
  • [36] An in-depth study of Sn substitution in Li-rich/Mn-rich NMC as a cathode material for Li-ion batteries
    Paulus, Andreas
    Hendrickx, Mylene
    Bercx, Marnik
    Karakulina, Olesia M.
    Kirsanova, Maria A.
    Lamoen, Dirk
    Hadermann, Joke
    Abakumov, Artem M.
    Van Bael, Marlies K.
    Hardy, An
    DALTON TRANSACTIONS, 2020, 49 (30) : 10486 - 10497
  • [37] High-Performance Li-Rich Layered Transition Metal Oxide Cathode Materials for Li-Ion Batteries
    Redel, Katarzyna
    Kulka, Andrzej
    Plewa, Anna
    Molenda, Janina
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (03) : A5333 - A5342
  • [38] Stabilizing Li-rich layered cathode materials by nanolayer-confined crystal growth for Li-ion batteries
    Lan, Xiwei
    Li, Yaqian
    Guo, Songtao
    Yu, Le
    Xin, Yue
    Liu, Zhifang
    Hu, Xianluo
    ELECTROCHIMICA ACTA, 2020, 333
  • [39] Mechanochemical synthesis of Li-rich (Li2Fe)SO cathode for Li-ion batteries
    Mohamed, M. A. A.
    Saadallah, H. A. A.
    Gonzalez-Martinez, I. G.
    Hantusch, M.
    Valldor, M.
    Buechner, B.
    Hampel, S.
    Graessler, N.
    GREEN CHEMISTRY, 2023, 25 (10) : 3878 - 3887
  • [40] Improving the structural stability of Li-rich cathode materials via reservation of cations in the Li-slab for Li-ion batteries
    Shi, Ji-Lei
    Xiao, Dong-Dong
    Zhang, Xu-Dong
    Yin, Ya-Xia
    Guo, Yu-Guo
    Gu, Lin
    Wan, Li-Jun
    NANO RESEARCH, 2017, 10 (12) : 4201 - 4209