The LC-Structure-Preserving Algorithms of Quaternion LDLH Decomposition and Cholesky Decomposition

被引:0
|
作者
Zhang, Mingcui [1 ]
Li, Ying [1 ]
Sun, Jianhua [1 ]
Ding, Wenxv [1 ]
机构
[1] Liaocheng Univ, Sch Math Sci, Liaocheng 252000, Peoples R China
基金
中国国家自然科学基金;
关键词
Semi-tensor product of matrices; L-C-representation; L-C-structure-preserving; LDLH decomposition; Cholesky decomposition; SINGULAR-VALUE DECOMPOSITION;
D O I
10.1007/s00006-023-01298-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the L-C-structure-preserving algorithms of LDLH decomposition and Cholesky decomposition of quaternion Hermitian positive definite matrices based on the semi-tensor product of matrices are studied. We first propose L-C-representation by using the semi-tensor product of matries and the structure matrix of the product of the quaternion. Then, L-C-structure-preserving algorithms of LDLH decomposition and Cholesky decomposition of quaternion Hermitian positive definite matrices are proposed by using L-C-representation, and the advantages of our method are obtained by comparing the operation time and error with the real structure-preserving algorithms in Wei et al. (Quaternion matrix computations. Nova Science Publishers, Hauppauge, 2018). Finally, we apply the L-C-structure-preserving algorithm of Cholesky decomposition to strict authentication of color images.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Algebraic method for LU decomposition of dual quaternion matrix and its corresponding structure-preserving algorithm
    Wang, Tao
    Li, Ying
    Wei, Musheng
    Xi, Yimeng
    Zhang, Mingcui
    NUMERICAL ALGORITHMS, 2024, 97 (03) : 1367 - 1382
  • [22] TWO ALGEBRAIC ALGORITHMS FOR THE LU DECOMPOSITION OF COMMUTATIVE QUATERNION MATRICES AND THEIR APPLICATIONS
    Zhang, D.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2023, 11 (04): : 130 - 142
  • [23] EFFICIENT LOGARITHMIC TIME PARALLEL ALGORITHMS FOR THE CHOLESKY DECOMPOSITION AND GRAM-SCHMIDT PROCESS
    BARON, I
    PARALLEL COMPUTING, 1991, 17 (4-5) : 409 - 417
  • [24] Comments on 'A structure-preserving method for the quaternion LU decomposition in quaternionic quantum theory' by Minghui Wang and Wenhao Ma
    Sangwine, Stephen J.
    COMPUTER PHYSICS COMMUNICATIONS, 2015, 188 : 128 - 130
  • [25] Cholesky decomposition of the two-electron integral matrix in electronic structure calculations
    Roeggen, I.
    Johansen, Tor
    JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (19):
  • [26] Cholesky decomposition-based definition of atomic subsystems in electronic structure calculations
    Sanchez de Meras, Alfredo M. J.
    Koch, Henrik
    Garcia Cuesta, Inmaculada
    Boman, Linus
    JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (20):
  • [27] Real structure-preserving algorithms of Householder based transformations for quaternion matrices
    Li, Ying
    Wei, Musheng
    Zhang, Fengxia
    Zhao, Jianli
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 305 : 82 - 91
  • [28] A REAL STRUCTURE-PRESERVING ALGORITHM FOR THE LOW- RANK DECOMPOSITION OF PURE IMAGINARY QUATERNION MATRICES AND ITS APPLICATIONS IN SIGNAL PROCESSING
    Wang, G.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2023, 11 (04): : 117 - 129
  • [29] The structure is the message: Preserving experimental context through tensor decomposition
    Tan, Zhixin Cyrillus
    Meyer, Aaron S.
    CELL SYSTEMS, 2024, 15 (08) : 679 - 693
  • [30] Structure-Preserving Sparse Decomposition for Facial Expression Analysis
    Taheri, Sima
    Qiu, Qiang
    Chellappa, Rama
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (08) : 3590 - 3603