Enhanced decoupling graph convolution network for skeleton-based action recognition

被引:0
|
作者
Gu, Yue [1 ,2 ]
Yu, Qiang [1 ]
Xue, Wanli [1 ,2 ]
机构
[1] Tianjin Univ Technol, Key Lab Comp Vis & Syst, Minist Educ, Sch Comp Sci & Engn, Tianjin 300384, Peoples R China
[2] Tianjin Univ Technol, Engn Res Ctr Learning Based Intelligent Syst, Minist Educ, Tianjin 300384, Peoples R China
关键词
Action recognition; Graph convolution networks; Attention mechanism;
D O I
10.1007/s11042-023-17176-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In skeleton-based action recognition, graph convolution networks have been widely applied and very successful. However, because graph convolution is a local operation with a small field of perception, it cannot investigate well for the connections between joints that are far apart in the skeleton graph. In addition, graph convolution makes all channels share the same adjacency matrix, which causes the topology learned to be the same among different channels, which limits the ability of graph convolution to learn topological information. In this paper, we propose an enhanced decoupling graph convolution network that effectively expands the perceptual field of the graph convolution by adding additional graphs, and the decoupled feature fusion mechanism increases its expressive power. In addition, we introduce an attention mechanism in the model to obtain the important elements in the whole feature map from both spatial and temporal dimensions simultaneously, so that the graph convolution can focus on the important elements more precisely and efficiently and suppress the influence of irrelevant elements on the model performance. To validate the effectiveness and advancedness of the proposed model, we conducted extensive experiments on three large datasets: NTU RGB+D 60, NTU RGB+D120 and Northwestern-UCLA. On the NTU RGB+D 60 dataset, the accuracy of our model archieves 91.6% and 96.5% on the two protocols.
引用
收藏
页码:73289 / 73304
页数:16
相关论文
共 50 条
  • [41] Symmetrical Enhanced Fusion Network for Skeleton-Based Action Recognition
    Kong, Jun
    Deng, Haoyang
    Jiang, Min
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (11) : 4394 - 4408
  • [42] Multi-stream ternary enhanced graph convolutional network for skeleton-based action recognition
    Kong, Jun
    Wang, Shengquan
    Jiang, Min
    Liu, TianShan
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (25): : 18487 - 18504
  • [43] Spatial adaptive graph convolutional network for skeleton-based action recognition
    Zhu, Qilin
    Deng, Hongmin
    APPLIED INTELLIGENCE, 2023, 53 (14) : 17796 - 17808
  • [44] Relation Selective Graph Convolutional Network for Skeleton-Based Action Recognition
    Yang, Wenjie
    Zhang, Jianlin
    Cai, Jingju
    Xu, Zhiyong
    SYMMETRY-BASEL, 2021, 13 (12):
  • [45] EARLY FUSION GRAPH CONVOLUTIONAL NETWORK FOR SKELETON-BASED ACTION RECOGNITION
    Zhao, Xiaoxue
    Liu, Cuiwei
    Shi, Xiangbin
    2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2021,
  • [46] Selective directed graph convolutional network for skeleton-based action recognition
    Ke, Chengyuan
    Liu, Sheng
    Feng, Yuan
    Chen, Shengyong
    PATTERN RECOGNITION LETTERS, 2025, 190 : 141 - 146
  • [47] Hierarchical Aggregated Graph Neural Network for Skeleton-Based Action Recognition
    Geng, Pei
    Lu, Xuequan
    Li, Wanqing
    Lyu, Lei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 11003 - 11017
  • [48] Multi-stream ternary enhanced graph convolutional network for skeleton-based action recognition
    Jun Kong
    Shengquan Wang
    Min Jiang
    TianShan Liu
    Neural Computing and Applications, 2023, 35 : 18487 - 18504
  • [49] Scale Adaptive Graph Convolutional Network for Skeleton-Based Action Recognition
    Wang X.
    Zhong Y.
    Jin L.
    Xiao Y.
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2022, 55 (03): : 306 - 312
  • [50] Feature reconstruction graph convolutional network for skeleton-based action recognition
    Huang, Junhao
    Wang, Ziming
    Peng, Jian
    Huang, Feihu
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126