EddyDet: A Deep Framework for Oceanic Eddy Detection in Synthetic Aperture Radar Images

被引:3
|
作者
Zhang, Di [1 ]
Gade, Martin [1 ]
Wang, Wensheng [2 ,3 ]
Zhou, Haoran [2 ,3 ]
机构
[1] Univ Hamburg, Inst Meereskunde, D-20146 Hamburg, Germany
[2] Chinese Acad Sci, Inst Elect, Key Lab Network Informat Syst Technol NIST, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
关键词
oceanic eddy detection; deep learning; Mask RCNN; SAR; edge enhancement; EDDIES; STATISTICS; TRACKING; SEA;
D O I
10.3390/rs15194752
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper presents a deep framework EddyDet to automatically detect oceanic eddies in Synthetic Aperture Radar (SAR) images. The EddyDet has been developed using the Mask Region with Convolutional Neural Networks (Mask RCNN) framework, incorporating two new branches: Edge Head and Mask Intersection over Union (IoU) Head. The Edge Head can learn internal texture information implicitly, and the Mask IoU Head improves the quality of predicted masks. A SAR dataset for Oceanic Eddy Detection (SOED) is specifically constructed to evaluate the effectiveness of the EddyDet model in detecting oceanic eddies. We demonstrate that the EddyDet is capable of achieving acceptable eddy detection results under the condition of limited training samples, which outperforms a Mask RCNN baseline in terms of average precision. The combined Edge Head and Mask IoU Head have the ability to describe the characteristics of eddies more correctly, while the EddyDet shows great potential in practice use accurately and time efficiently, saving manual labor to a large extent.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Coastline detection using optical and synthetic aperture radar images
    Yu, T.
    Xu, S. W.
    Tao, B. Y.
    Shao, W. Z.
    ADVANCES IN SPACE RESEARCH, 2022, 70 (01) : 70 - 84
  • [22] A lightweight deep learning model for classification of synthetic aperture radar images
    Passah, Alicia
    Kandar, Debdatta
    ECOLOGICAL INFORMATICS, 2023, 77
  • [23] Optical images-based edge detection in Synthetic Aperture Radar images
    Silva Junior, Gilberto P.
    Frery, Alejandro C.
    Sandri, Sandra
    Bustince, Humberto
    Barrenechea, Edume
    Marco-Detchart, Cedric
    KNOWLEDGE-BASED SYSTEMS, 2015, 87 : 38 - 46
  • [24] An automatic approach for the detection of oil spill using optimized deep learning in synthetic aperture radar images
    Murugan, J. Senthil
    Parthasarathy, V
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2023, 45 (03) : 6772 - 6787
  • [25] Transferred Deep Learning for Sea Ice Change Detection From Synthetic-Aperture Radar Images
    Gao, Yunhao
    Gao, Feng
    Dong, Junyu
    Wang, Shengke
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (10) : 1655 - 1659
  • [26] Three-Class Change Detection in Synthetic Aperture Radar Images Based on Deep Belief Network
    Zhao, Qiunan
    Gong, Maoguo
    Li, Hao
    Zhan, Tao
    Wang, Qian
    BIO-INSPIRED COMPUTING - THEORIES AND APPLICATIONS, BIC-TA 2015, 2015, 562 : 696 - 705
  • [27] New method of the shadow and target detection of synthetic aperture radar images
    Fu, Kun
    Kuang, Gang-Yao
    Yu, Wen-Xian
    Ruan Jian Xue Bao/Journal of Software, 2002, 13 (04): : 818 - 826
  • [28] Ship Detection Based on Compound Distribution with Synthetic Aperture Radar Images
    Wu, Fan
    Gao, Congshan
    Wang, Chao
    Zhang, Hong
    Zhang, Bo
    2010 IEEE 10TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS (ICSP2010), VOLS I-III, 2010, : 841 - 844
  • [29] Ship detection from scratch in Synthetic Aperture Radar (SAR) images
    Zhao, Kai
    Zhou, Yan
    Chen, Xin
    Wang, Bing
    Zhang, Yong
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (13) : 5014 - 5028
  • [30] On Semiparametric Clutter Estimation for Ship Detection in Synthetic Aperture Radar Images
    Cui, Yi
    Yang, Jian
    Yamaguchi, Yoshio
    Singh, Gulab
    Park, Sang-Eun
    Kobayashi, Hirokazu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (05): : 3170 - 3180