Machine Learning for Diagnosis of Diseases with Complete Gene Expression Profile

被引:0
|
作者
Mikhailov, A. M. [1 ]
Karavai, M. F. [1 ]
Sivtsov, V. A. [1 ]
Kurnikova, M. A. [2 ]
机构
[1] Russian Acad Sci, Trapeznikov Inst Control Sci, Moscow, Russia
[2] Dmitry Rogachev Natl Med Res Ctr Pediat Hematol On, Moscow, Russia
关键词
pattern recognition; machine learning; inverse patterns; gene expression profiles; diagnosis of diseases; SEARCH;
D O I
10.1134/S0005117923070093
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the use of machine learning for diagnosis of diseases that is based on the analysis of a complete gene expression profile. This distinguishes our study from other approaches that require a preliminary step of finding a limited number of relevant genes (tens or hundreds of genes). We conducted experiments with complete genetic expression profiles (20 531 genes) that we obtained after processing transcriptomes of 801 patients with known oncologic diagnoses (oncology of the lung, kidneys, breast, prostate, and colon). Using the indextron (instant learning index system) for a new purpose, i.e., for complete expression profile processing, provided diagnostic accuracy that is 99.75% in agreement with the results of histological verification.
引用
收藏
页码:727 / 733
页数:7
相关论文
共 50 条
  • [21] Machine Learning Applied to Diagnosis of Human Diseases: A Systematic Review
    Caballe-Cervigon, Nuria
    Castillo-Sequera, Jose L.
    Gomez-Pulido, Juan A.
    Gomez-Pulido, Jose M.
    Polo-Luque, Maria L.
    APPLIED SCIENCES-BASEL, 2020, 10 (15):
  • [22] Automated Diagnosis of Diseases Using Integrated Machine Learning Approaches
    Rose, M. V. Sunena
    Sobhana, N., V
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR 2021), 2022, 417 : 195 - 204
  • [23] Mitigating Risk in the Application of Machine Learning to the Diagnosis of Bronchopulmonary Diseases
    Yusupova, N. I.
    Bogdanov, M. R.
    Smetanina, O. N.
    SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING, 2024, 51 (05) : 487 - 496
  • [24] The potential use of gene expression profile to identify useful biomarkers for the diagnosis and the treatment of pediatric inflammatory bowel diseases
    Vitale, Serena
    Strisciuglio, Caterina
    PEDIATRIC RESEARCH, 2020, 87 (05) : 805 - 806
  • [25] The potential use of gene expression profile to identify useful biomarkers for the diagnosis and the treatment of pediatric inflammatory bowel diseases
    Serena Vitale
    Caterina Strisciuglio
    Pediatric Research, 2020, 87 : 805 - 806
  • [26] A Machine Learning Approach to Gene Expression in Hypertrophic Cardiomyopathy
    Pavic, Jelena
    Zivanovic, Marko
    Tanaskovic, Irena
    Pavic, Ognjen
    Stankovic, Vesna
    Virijevic, Katarina
    Mladenovic, Tamara
    Kosaric, Jelena
    Milicevic, Bogdan
    Qamar, Safi Ur Rehman
    Velicki, Lazar
    Novakovic, Ivana
    Preveden, Andrej
    Popovic, Dejana
    Tesic, Milorad
    Seman, Stefan
    Filipovic, Nenad
    PHARMACEUTICALS, 2024, 17 (10)
  • [27] Machine Learning In Bioinformatics: Gene Expression And Microarray Studies
    Bagiroz, Beyza
    Doruk, Emre
    Yildiz, Oktay
    2020 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2020,
  • [28] Comparison of Machine Learning Pipelines for Gene Expression Matrices
    Devino, Mateus
    Belloze, Kele
    Bezerra, Eduardo
    ADVANCES IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, BSB 2022, 2022, 13523 : 32 - 37
  • [29] A primer on gene expression and microarrays for machine learning researchers
    Kuo, WP
    Kim, EY
    Trimarchi, J
    Jenssen, TK
    Vinterbo, SA
    Ohno-Machado, L
    JOURNAL OF BIOMEDICAL INFORMATICS, 2004, 37 (04) : 293 - 303
  • [30] Integrative gene expression analysis for the diagnosis of Parkinson's disease using machine learning and explainable AI
    Bhandari, Nikita
    Walambe, Rahee
    Kotecha, Ketan
    Kaliya, Mehul
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 163