HeteEdgeWalk: A Heterogeneous Edge Memory Random Walk for Heterogeneous Information Network Embedding

被引:1
|
作者
Liu, Zhenpeng [1 ]
Zhang, Shengcong [2 ]
Zhang, Jialiang [2 ]
Jiang, Mingxiao [2 ]
Liu, Yi [1 ]
机构
[1] Hebei Univ, Informat Technol Ctr, Baoding 071002, Peoples R China
[2] Hebei Univ, Sch Cyber Secur & Comp, Baoding 071002, Peoples R China
关键词
network embeddings; random walk; heterogeneous information network; representation learning; edge sampling;
D O I
10.3390/e25070998
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Most Heterogeneous Information Network (HIN) embedding methods use meta-paths to guide random walks to sample from HIN and perform representation learning in order to overcome the bias of traditional random walks that are more biased towards high-order nodes. Their performance depends on the suitability of the generated meta-paths for the current HIN. The definition of meta-paths requires domain expertise, which makes the results overly dependent on the meta-paths. Moreover, it is difficult to represent the structure of complex HIN with a single meta-path. In a meta-path guided random walk, some of the heterogeneous structures (e.g., node type(s)) are not among the node types specified by the meta-path, making this heterogeneous information ignored. In this paper, HeteEdgeWalk, a solution method that does not involve meta-paths, is proposed. We design a dynamically adjusted bidirectional edge-sampling walk strategy. Specifically, edge sampling and the storage of recently selected edge types are used to better sample the network structure in a more balanced and comprehensive way. Finally, node classification and clustering experiments are performed on four real HINs with in-depth analysis. The results show a maximum performance improvement of 2% in node classification and at least 0.6% in clustering compared to baselines. This demonstrates the superiority of the method to effectively capture semantic information from HINs.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Outer product enhanced heterogeneous information network embedding for recommendation
    He, Yunfei
    Zhang, Yiwen
    Qi, Lianyong
    Yan, Dengcheng
    He, Qiang
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 169
  • [32] Temporal Heterogeneous Information Network Embedding via Semantic Evolution
    Zhou, Wei
    Huang, Hong
    Shi, Ruize
    Song, Xiran
    Lin, Xue
    Wang, Xiao
    Jin, Hai
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (12) : 13031 - 13042
  • [33] Learning and Updating Node Embedding on Dynamic Heterogeneous Information Network
    Xie, Yuanzhen
    Ou, Zijing
    Chen, Liang
    Liu, Yang
    Xu, Kun
    Yang, Carl
    Zheng, Zibin
    WSDM '21: PROCEEDINGS OF THE 14TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2021, : 184 - 192
  • [34] Deep Adversarial Completion for Sparse Heterogeneous Information Network Embedding
    Zhao, Kai
    Bai, Ting
    Wu, Bin
    Wang, Bai
    Zhang, Youjie
    Yang, Yuanyu
    Nie, Jian-Yun
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 508 - 518
  • [35] Multi-view Dynamic Heterogeneous Information Network Embedding
    Zhang, Zhenghao
    Huang, Jianbin
    Tan, Qinglin
    COMPUTER JOURNAL, 2022, 65 (08): : 2016 - 2033
  • [36] Preface of special issue on heterogeneous information network embedding and applications
    Li, Weimin
    Liu, Lu
    Wang, Kevin I. K.
    Jin, Qun
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 152 : 331 - 332
  • [37] An Adaptive Semantic Mining Framework for Heterogeneous Information Network Embedding
    Shao, Hao
    Zhu, Rangang
    Liu, Hui
    Wang, Lunwen
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (01) : 1384 - 1401
  • [38] Heterogeneous Information Network Embedding with Convolutional Graph Attention Networks
    Cao, Meng
    Ma, Xiying
    Zhu, Kai
    Xu, Ming
    Wang, Chongjun
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [39] HetETA: Heterogeneous Information Network Embedding for Estimating Time of Arrival
    Hong, Huiting
    Lin, Yucheng
    Yang, Xiaoqing
    Li, Zang
    Fu, Kung
    Wang, Zheng
    Qie, Xiaohu
    Ye, Jieping
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 2444 - 2454
  • [40] Relation Structure-Aware Heterogeneous Information Network Embedding
    Lu, Yuanfu
    Shi, Chuan
    Hu, Linmei
    Liu, Zhiyuan
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 4456 - 4463