Trigonometric identities from the mystic rose

被引:0
|
作者
Stephenson, Paul [1 ]
机构
[1] Bohmerstr 66, D-45144 Essen, Germany
来源
MATHEMATICAL GAZETTE | 2023年 / 107卷 / 569期
关键词
D O I
10.1017/mag.2023.74
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:349 / 355
页数:7
相关论文
共 50 条
  • [41] SOME TRIGONOMETRIC IDENTITIES ENCOUNTERED BY MCCOY AND ORRICK
    GERVOIS, A
    MEHTA, ML
    JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (09) : 5098 - 5109
  • [42] Identities involving trigonometric functions and Bernoulli numbers
    Zhang, Wenpeng
    Lin, Xin
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 334 : 288 - 294
  • [43] Trigonometric identities: from Hermite via Meijer, Norlund, and Braaksma to Chu and Johnson and beyond
    Dyachenko, Alexander
    Karp, Dmitrii
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2023, 29 (02):
  • [44] Proofs for two q-trigonometric identities of Gosper
    Touk, Sarah Abo
    Al Houchan, Zina
    El Bachraoui, Mohamed
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 456 (01) : 662 - 670
  • [45] Some Trigonometric Identities Involving Fibonacci and Lucas Numbers
    Bibak, Kh.
    Haghighi, M. H. Shirdareh
    JOURNAL OF INTEGER SEQUENCES, 2009, 12 (08)
  • [46] Entire solutions of differential equations that are related to trigonometric identities
    Gundersen, Gary G.
    Lu, Wei-Ran
    Ng, Tuen-Wai
    Yang, Chung-Chun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 507 (01)
  • [47] Proofs for certain q-trigonometric identities of Gosper
    Bing He
    Hongcun Zhai
    ScienceChina(Mathematics), 2020, 63 (12) : 2415 - 2422
  • [48] Balanced derivatives, identities, and bounds for trigonometric and Bessel series
    Berndt, Bruce C.
    Fassina, Martino
    Kim, Sun
    Zaharescu, Alexandru
    ADVANCES IN MATHEMATICS, 2022, 395
  • [49] Proofs for certain q-trigonometric identities of Gosper
    He, Bing
    Zhai, Hongcun
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (12) : 2415 - 2422
  • [50] Proofs for certain q-trigonometric identities of Gosper
    Bing He
    Hongcun Zhai
    Science China Mathematics, 2020, 63 : 2415 - 2422