Hilbert C*-Modules with Hilbert Dual and C*-Fredholm Operators

被引:0
|
作者
Manuilov, Vladimir [1 ]
Troitsky, Evgenij [1 ]
机构
[1] Lomonosov Moscow State Univ, Moscow Ctr Fundamental & Appl Math, Dept Mech & Math, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
Hilbert C*-module; Monotone complete C*-algebra; Dual module; Self-dual module; Orthogonal complement; Polar decomposi-tion; A-Fredholm operator;
D O I
10.1007/s00020-023-02737-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Hilbert C*-modules over a C*-algebra A for which the Banach A-dual module carries a natural structure of Hilbert A module. In this direction we prove that if A is monotone complete, M and N are Hilbert A-modules, M is self-dual, and both T : M? N and its Banach A-dual T' : N'? M' have trivial kernels and cokernels then M ? N'. With the help of this result, for a monotone complete C*-algebra A, we prove that the index of any A-Fredholm operator can be calculated as the difference of its kernel and cokernel as in the Hilbert space case.
引用
收藏
页数:12
相关论文
共 50 条