Generalized autoregressive moving average models: an efficient estimation approach

被引:1
|
作者
Hossain, Shakhawat [1 ]
Pandher, Sharandeep [2 ]
Volodin, Andrei [2 ]
机构
[1] Univ Winnipeg, Dept Math & Stat, Winnipeg, MB R3B 2E9, Canada
[2] Univ Regina, Dept Math & Stat, Regina, SK, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
ADB and ADR; binary and count time series; GARMA model; improved pretest and shrinkage; simulation studies; SHRINKAGE; REGRESSION; DIRECTION; BINARY;
D O I
10.1080/00949655.2022.2111568
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose an efficient estimation approach, so-called the pretest and shrinkage approach in estimating the regression parameters of the generalized autoregressive moving average (GARMA) model, which are pervasive for modelling binary and count time series data. This model accommodates a set of covariates in addition to the ARMA parameters. We want to estimate regression and ARMA parameters when some of the regression parameters may belong to a subspace. We apply the maximum partial likelihood method to obtain the unrestricted maximum partial likelihood estimator(UMPLE) and also the restricted maximum partial likelihood estimator (RMPLE) for the model with parameter restriction and then present the improved pretest and shrinkage estimators. We establish the asymptotic distributional biases and risks of the proposed estimators and evaluate their relative performance with respect to the UMPLE. The performance of the proposed estimators is investigated using simulation studies. A real data example is provided to illustrate the practical usefulness of the estimators.
引用
收藏
页码:556 / 580
页数:25
相关论文
共 50 条
  • [31] AUTOREGRESSIVE AND MIXED AUTOREGRESSIVE-MOVING AVERAGE MODELS AND SPECTRA
    ULRYCH, TJ
    OOE, M
    TOPICS IN APPLIED PHYSICS, 1983, 34 : 73 - 125
  • [33] Rank-based estimation for autoregressive moving average time series models
    Andrews, Beth
    JOURNAL OF TIME SERIES ANALYSIS, 2008, 29 (01) : 51 - 73
  • [34] BIVARIATE EXPONENTIAL AND GEOMETRIC AUTOREGRESSIVE AND AUTOREGRESSIVE MOVING AVERAGE MODELS
    BLOCK, HW
    LANGBERG, NA
    STOFFER, DS
    ADVANCES IN APPLIED PROBABILITY, 1988, 20 (04) : 798 - 821
  • [35] Vector AutoRegressive Moving Average Models: A Review
    Dueker, Marie-Christine
    Matteson, David S.
    Tsay, Ruey S.
    Wilms, Ines
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2025, 17 (01):
  • [36] Erratum to: Beta autoregressive moving average models
    Andréa V. Rocha
    Francisco Cribari-Neto
    TEST, 2017, 26 : 451 - 459
  • [37] Inflated beta autoregressive moving average models
    Bayer, Fabio M.
    Pumi, Guilherme
    Pereira, Tarciana Liberal
    Souza, Tatiene C.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (04):
  • [38] Inflated beta autoregressive moving average models
    Fábio M. Bayer
    Guilherme Pumi
    Tarciana Liberal Pereira
    Tatiene C. Souza
    Computational and Applied Mathematics, 2023, 42
  • [39] ROBUST IDENTIFICATION OF AUTOREGRESSIVE MOVING AVERAGE MODELS
    MASAROTTO, G
    APPLIED STATISTICS-JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C, 1987, 36 (02): : 214 - 220
  • [40] The specification of vector autoregressive moving average models
    Koreisha, SG
    Pukkila, T
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2004, 74 (08) : 547 - 565