Pre-Harvest Corn Grain Moisture Estimation Using Aerial Multispectral Imagery and Machine Learning Techniques

被引:2
|
作者
Jjagwe, Pius [1 ,2 ]
Chandel, Abhilash K. [1 ,2 ]
Langston, David [1 ]
机构
[1] Virginia Tech Tidewater Agr Res & Extens Ctr, Suffolk, VA 23437 USA
[2] Virginia Tech, Dept Biol Syst Engn, Blacksburg, VA 24061 USA
关键词
aerial multispectral sensing; corn grain moisture; machine learning; precision harvest; LEAF CHLOROPHYLL CONTENT; VEGETATION INDEX; REFLECTANCE; QUANTIFICATION; REGRESSION; BIOMASS; MODELS; YIELD; COLOR;
D O I
10.3390/land12122188
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Corn grain moisture (CGM) is critical to estimate grain maturity status and schedule harvest. Traditional methods for determining CGM range from manual scouting, destructive laboratory analyses, and weather-based dry down estimates. Such methods are either time consuming, expensive, spatially inaccurate, or subjective, therefore they are prone to errors or limitations. Realizing that precision harvest management could be critical for extracting the maximum crop value, this study evaluates the estimation of CGM at a pre-harvest stage using high-resolution (1.3 cm/pixel) multispectral imagery and machine learning techniques. Aerial imagery data were collected in the 2022 cropping season over 116 experimental corn planted plots. A total of 24 vegetation indices (VIs) were derived from imagery data along with reflectance (REF) information in the blue, green, red, red-edge, and near-infrared imaging spectrum that was initially evaluated for inter-correlations as well as subject to principal component analysis (PCA). VIs including the Green Normalized Difference Index (GNDVI), Green Chlorophyll Index (GCI), Infrared Percentage Vegetation Index (IPVI), Simple Ratio Index (SR), Normalized Difference Red-Edge Index (NDRE), and Visible Atmospherically Resistant Index (VARI) had the highest correlations with CGM (r: 0.68-0.80). Next, two state-of-the-art statistical and four machine learning (ML) models (Stepwise Linear Regression (SLR), Partial Least Squares Regression (PLSR), Artificial Neural Network (ANN), Support Vector Machine (SVM), Random Forest (RF), and K-nearest neighbor (KNN)), and their 120 derivates (six ML models x two input groups (REFs and REFs+VIs) x 10 train-test data split ratios (starting 50:50)) were formulated and evaluated for CGM estimation. The CGM estimation accuracy was impacted by the ML model and train-test data split ratio. However, the impact was not significant for the input groups. For validation over the train and entire dataset, RF performed the best at a 95:5 split ratio, and REFs+VIs as the input variables (rtrain: 0.97, rRMSEtrain: 1.17%, rentire: 0.95, rRMSEentire: 1.37%). However, when validated for the test dataset, an increase in the train-test split ratio decreased the performances of the other ML models where SVM performed the best at a 50:50 split ratio (r = 0.70, rRMSE = 2.58%) and with REFs+VIs as the input variables. The 95:5 train-test ratio showed the best performance across all the models, which may be a suitable ratio for relatively smaller or medium-sized datasets. RF was identified to be the most stable and consistent ML model (r: 0.95, rRMSE: 1.37%). Findings in the study indicate that the integration of aerial remote sensing and ML-based data-run techniques could be useful for reliably predicting CGM at the pre-harvest stage, and developing precision corn harvest scheduling and management strategies for the growers.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Quantifying corn LAI using machine learning and UAV multispectral imaging
    Cheng, Qian
    Ding, Fan
    Xu, Honggang
    Guo, Shuzhe
    Li, Zongpeng
    Chen, Zhen
    PRECISION AGRICULTURE, 2024, 25 (04) : 1777 - 1799
  • [32] Machine Learning for Soil Moisture Prediction Using Hyperspectral and Multispectral Data
    Lobato, Michaela
    Norris, William Robert
    Nagi, Rakesh
    Soylemezoglu, Ahmet
    Nottage, Dustin
    2021 IEEE 24TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2021, : 696 - 702
  • [33] Estimation of Soil Characteristics from Multispectral Sentinel-3 Imagery and DEM Derivatives Using Machine Learning
    Piccoli, Flavio
    Barbato, Mirko Paolo
    Peracchi, Marco
    Napoletano, Paolo
    SENSORS, 2023, 23 (18)
  • [34] Estimation of Crop Biomass and Leaf Area Index from Multitemporal and Multispectral Imagery Using Machine Learning Approaches
    Gahrouei, Omid
    McNairn, Heather
    Hosseini, Mehdi
    Homayouni, Saeid
    CANADIAN JOURNAL OF REMOTE SENSING, 2020, 46 (01) : 84 - 99
  • [35] Pre-Emptive Detection of Mature Pine Drought Stress Using Multispectral Aerial Imagery
    Grulke, Nancy
    Maxfield, Jason
    Riggan, Phillip
    Schrader-Patton, Charlie
    REMOTE SENSING, 2020, 12 (14)
  • [36] Mapping almond stem water potential using machine learning and multispectral imagery
    Savchik, Peter
    Nocco, Mallika
    Kisekka, Isaya
    IRRIGATION SCIENCE, 2025, 43 (01) : 105 - 120
  • [37] Surveying Nearshore Bathymetry Using Multispectral and Hyperspectral Satellite Imagery and Machine Learning
    Hartmann, David
    Gravey, Mathieu
    Price, Timothy David
    Nijland, Wiebe
    de Jong, Steven Michael
    REMOTE SENSING, 2025, 17 (02)
  • [38] Pumice Raft Detection Using Machine-Learning on Multispectral Satellite Imagery
    Zheng, Maggie
    Mittal, Tushar
    Fauria, Kristen E.
    Subramaniam, Ajit
    Jutzeler, Martin
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [39] Combining Multispectral and Radar Imagery with Machine Learning Techniques to Map Intertidal Habitats for Migratory Shorebirds
    Henriques, Mohamed
    Catry, Teresa
    Belo, Joao Ricardo
    Piersma, Theunis
    Pontes, Samuel
    Granadeiro, Jose Pedro
    REMOTE SENSING, 2022, 14 (14)
  • [40] Corn Grain Yield Prediction Using UAV-based High Spatiotemporal Resolution Multispectral Imagery
    Killeen, Patrick
    Kiringa, Iluju
    Yeap, Tet
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW, 2022, : 1054 - 1062