Weighted Elliptic Equations in Dimension N with Subcritical and Critical Double Exponential Nonlinearities

被引:1
|
作者
Abid, Imed [1 ]
Jaidane, Rached [2 ]
机构
[1] Univ El Tunis Manar, Higher Inst Med Technol Tunis, 9 St Dr Zouhair Essafi, Tunis 1006, Tunisia
[2] Univ Tunis El Manar, Fac Sci Tunis, Univ Campus, Tunis 2092, Tunisia
关键词
Trudinger-Moser inequality; nonlinearity of double exponential growth; critical exponents; compactness level;
D O I
10.15407/mag19.03.527
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the existence of nontrivial solutions forthe following weighted problem without the Ambrosetti-Rabinowitzcondition:-div(sigma(x)|del u|N-2 del u) =f(x,u) andu >0 inB,u= 0 on partial derivative B, whereBis the unit ball ofRN,sigma(x) =(log(e|x|))N-1is the singularlogarithmic weight in the Trudinger-Moser embedding. The nonlinearity isa critical or subcritical growth in view of Trudinger-Moser inequalities. Inorder to obtain the existence result, we used minimax techniques combinedwith the Trudinger-Moser inequality. In the critical case, the associatedenergy does not satisfy the condition of compactness. We provide a newcondition for growth and we stress its importance to avoid compactnesslevel
引用
收藏
页码:527 / 555
页数:29
相关论文
共 50 条