Action Recognition Based on 3D Skeleton and LSTM for the Monitoring of Construction Workers' Safety Harness Usage

被引:16
|
作者
Guo, Hongling [1 ]
Zhang, Zhitian [1 ]
Yu, Run [1 ]
Sun, Yakang [1 ]
Li, Heng [2 ]
机构
[1] Tsinghua Univ, Dept Construct Management, Beijing 100084, Peoples R China
[2] Hong Kong Polytech Univ, Dept Bldg & Real Estate, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Construction worker; Fall from height (FFH); Safety harness usage; Action recognition; Three-dimensional (3D) human skeleton; Deep learning; SHORT-TERM-MEMORY; NEURAL-NETWORKS; FALLS; MOTION; MODEL; FRAMEWORK; FEATURES; INDUSTRY; HEIGHTS;
D O I
10.1061/JCEMD4.COENG-12542
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Fall from height (FFH) is the most common construction accident in the construction industry, thus it is significant to monitor the use of safety harnesses, which are critical to the prevention of FFH. Sensing or computer vision technologies have been adopted to identify workers' safety harness usage. However, previous research focused mainly on whether a worker wears a safety harness rather than on whether he or she properly fixes it to a lifeline, which is vital to prevent FFH but difficult to monitor. This research establishes an action recognition method based on a three-dimensional (3D) skeleton and long short-term memory (LSTM) to aid in automatically monitoring whether safety harnesses are fixed properly on site. An indoor experiment, which considered the features of a common real construction scenario-working on scaffolding-was conducted to test the effectiveness and feasibility of the proposed method. The result shows that the method achieves an acceptable precision and recall rate and can be used to detect the incorrect use of safety harnesses by combining multiple actions. This will contribute to the prevention of FFH in practice as well as to the body of knowledge of construction safety management.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Structural-Attentioned LSTM for action recognition based on skeleton
    Wang, Pengcheng
    Li, Shaobin
    2018 INTERNATIONAL CONFERENCE ON IMAGE AND VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE, 2018, 10836
  • [22] SKELETON-BASED ACTION RECOGNITION USING LSTM AND CNN
    Li, Chuankun
    Wang, Pichao
    Wang, Shuang
    Hou, Yonghong
    Li, Wanqing
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2017,
  • [23] AFE-CNN: 3D Skeleton-based Action Recognition with Action Feature Enhancement
    Guan, Shannan
    Lu, Haiyan
    Zhu, Linchao
    Fang, Gengfa
    NEUROCOMPUTING, 2022, 514 : 256 - 267
  • [24] HIF3D: Handwriting -Inspired Features for 3D skeleton-based action recognition
    Boulahia, Said Yacine
    Anquetil, Eric
    Kulpa, Richard
    Multon, Franck
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 985 - 990
  • [25] Behavior Recognition Based on 3D Skeleton Features
    Liu, W. T.
    Lu, T. W.
    Miao, S. J.
    Peng, L.
    Min, F.
    INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENVIRONMENTAL ENGINEERING (CSEE 2015), 2015, : 760 - 765
  • [26] Understanding the Gap between 2D and 3D Skeleton-Based Action Recognition
    Elias, Petr
    Sedmidubsky, Jan
    Zezula, Pavel
    2019 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM 2019), 2019, : 192 - 195
  • [27] Action Recognition Using 3D CNN and LSTM for Video Analytics
    Umamakeswari, A.
    Angelus, Jonah
    Kannan, Monicaa
    Rashikha
    Bragadeesh, S. A.
    INTELLIGENT COMPUTING AND COMMUNICATION, ICICC 2019, 2020, 1034 : 531 - 539
  • [28] ACTION RECOGNITION USING JOINT COORDINATES OF 3D SKELETON DATA
    Batabyal, Tamal
    Chattopadhyay, Tanushyam
    Mukherjee, Dipti Prasad
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4107 - 4111
  • [29] Modeling the skeleton-language uncertainty for 3D action recognition
    Wang, Mingdao
    Zhang, Xianlin
    Chen, Siqi
    Li, Xueming
    Zhang, Yue
    NEUROCOMPUTING, 2024, 608
  • [30] Exploiting LSTM-RNNs and 3D Skeleton Features for Hand Gesture Recognition
    Guo, Heyuan
    Yang, Yang
    Cai, Hua
    2019 WORLD ROBOT CONFERENCE SYMPOSIUM ON ADVANCED ROBOTICS AND AUTOMATION (WRC SARA 2019), 2019, : 322 - 327