Attention-Guided Fusion and Classification for Hyperspectral and LiDAR Data

被引:2
|
作者
Huang, Jing [1 ]
Zhang, Yinghao [1 ]
Yang, Fang [1 ]
Chai, Li [2 ]
Tansey, Kevin
机构
[1] Wuhan Univ Sci & Technol, Engn Res Ctr Met Automat & Measurement Technol, Wuhan 430081, Peoples R China
[2] Zhejiang Univ, Coll Control Sci & Engn, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperspectral images; Light Detection And Ranging (LiDAR) data; fusion and classification; convolutional neural network; attention mechanism; IMAGE CLASSIFICATION; EXTINCTION PROFILES;
D O I
10.3390/rs16010094
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The joint use of hyperspectral image (HSI) and Light Detection And Ranging (LiDAR) data has been widely applied for land cover classification because it can comprehensively represent the urban structures and land material properties. However, existing methods fail to combine the different image information effectively, which limits the semantic relevance of different data sources. To solve this problem, in this paper, an Attention-guided Fusion and Classification framework based on Convolutional Neural Network (AFC-CNN) is proposed to classify the land cover based on the joint use of HSI and LiDAR data. In the feature extraction module, AFC-CNN employs the three dimensional convolutional neural network (3D-CNN) combined with a multi-scale structure to extract the spatial-spectral features of HSI, and uses a 2D-CNN to extract the spatial features from LiDAR data. Simultaneously, the spectral attention mechanism is adopted to assign weights to the spectral channels, and the cross attention mechanism is introduced to impart significant spatial weights from LiDAR to HSI, which enhance the interaction between HSI and LiDAR data and leverage the fusion information. Then two feature branches are concatenated and transferred to the feature fusion module for higher-level feature extraction and fusion. In the fusion module, AFC-CNN adopts the depth separable convolution connected through the residual structures to obtain the advanced features, which can help reduce computational complexity and improve the fitting ability of the model. Finally, the fused features are sent into the linear classification module for final classification. Experimental results on three datasets, i.e., Houston, MUUFL and Trento datasets show that the proposed AFC-CNN framework achieves better classification accuracy compared with the state-of-the-art algorithms. The overall accuracy of AFC-CNN on Houston, MUUFL and Trento datasets are 94.2%, 95.3% and 99.5%, respectively.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Joint Classification of Hyperspectral and LiDAR Data via Multiprobability Decision Fusion Method
    Chen, Tao
    Chen, Sizuo
    Chen, Luying
    Chen, Huayue
    Zheng, Bochuan
    Deng, Wu
    REMOTE SENSING, 2024, 16 (22)
  • [42] Information Fusion for Classification of Hyperspectral and LiDAR Data Using IP-CNN
    Zhang, Mengmeng
    Li, Wei
    Tao, Ran
    Li, Hengchao
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [43] OBJECT-BASED FUSION OF HYPERSPECTRAL AND LIDAR DATA FOR CLASSIFICATION OF URBAN AREAS
    Marpu, Prashanth Reddy
    Martinez, Sergio Sanchez
    2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2015,
  • [44] Multiple Information Collaborative Fusion Network for Joint Classification of Hyperspectral and LiDAR Data
    Tang, Xu
    Zou, Yizhou
    Ma, Jingjing
    Zhang, Xiangrong
    Liu, Fang
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [45] URBAN AREA OBJECT-BASED CLASSIFICATION BY FUSION OF HYPERSPECTRAL AND LIDAR DATA
    Kiani, Kamel
    Mojaradi, Barat
    Esmaeily, Ali
    Salehi, Bahram
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [46] MCFT: Multimodal Contrastive Fusion Transformer for Classification of Hyperspectral Image and LiDAR Data
    Feng, Yining
    Jin, Jiarui
    Yin, Yin
    Song, Chuanming
    Wang, Xianghai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [47] Fusion of Multispectral LiDAR, Hyperspectral, and RGB Data for Urban Land Cover Classification
    Haensch, Ronny
    Hellwich, Olaf
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (02) : 366 - 370
  • [48] Fusion of hyperspectral and LIDAR remote sensing data for classification of complex forest areas
    Dalponte, Michele
    Bruzzone, Lorenzo
    Gianelle, Damiano
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (05): : 1416 - 1427
  • [49] Urban classification by multi-feature fusion of hyperspectral image and LiDAR data
    Cao Q.
    Ma A.
    Zhong Y.
    Zhao J.
    Zhao B.
    Zhang L.
    Yaogan Xuebao/Journal of Remote Sensing, 2019, 23 (05): : 892 - 903
  • [50] MULTI-SCALE FEATURE FUSION FOR HYPERSPECTRAL AND LIDAR DATA JOINT CLASSIFICATION
    Zhang, Maqun
    Gao, Feng
    Dong, Junyu
    Qi, Lin
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 2856 - 2859