Dynamic prediction of malignant ventricular arrhythmias using neural networks in patients with an implantable cardioverter-defibrillator

被引:8
|
作者
Kolk, Maarten Z. H. [1 ,10 ]
Ruiperez-Campillo, Samuel [2 ,3 ,8 ,9 ]
Alvarez-Florez, Laura [4 ]
Deb, Brototo [2 ,3 ]
Bekkers, Erik J. [5 ]
Allaart, Cornelis P. [6 ]
Lingen, Anne-Lotte C. J. Van Der [6 ]
Clopton, Paul [2 ,3 ]
Isgum, Ivana [4 ,5 ,7 ]
Wilde, Arthur A. M. [10 ]
Knops, Reinoud E. [1 ,10 ]
Narayan, Sanjiv M. [2 ,3 ]
Tjong, Fleur V. Y. [1 ,2 ,3 ,10 ,11 ]
机构
[1] Univ Amsterdam, Amsterdam UMC, Dept Clin & Expt Cardiol, Heart Ctr, Meibergdreef 9, Amsterdam, Netherlands
[2] Stanford Univ, Dept Med, Stanford, CA USA
[3] Stanford Univ, Cardiovasc Inst, Stanford, CA USA
[4] Univ Amsterdam, Amsterdam Univ Med Ctr, Dept Biomed Engn & Phys, Meibergdreef 9, Amsterdam, Netherlands
[5] Univ Amsterdam, Fac Sci, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[6] Vrije Univ Amsterdam Med Ctr, Dept Cardiol, Amsterdam UMC, De Boelelaan 1118, NL-1118 Amsterdam, Netherlands
[7] Univ Amsterdam, Amsterdam UMC, Dept Radiol & Nucl Med, Meibergdreef 9, Amsterdam, Netherlands
[8] Swiss Fed Inst Technol Zurich ETHz, Dept Informat Technol & Elect Engn, Gloriastr 35, Zurich, Switzerland
[9] Univ Politecn Valencia, ITACA Inst, Camino Vera S-N, Valencia, Spain
[10] Amsterdam Cardiovasc Sci, Heart Failure & Arrhythmias, Amsterdam, Netherlands
[11] Univ Amsterdam, Heart Ctr, NL-1105 AZ Amsterdam, Netherlands
来源
EBIOMEDICINE | 2024年 / 99卷
基金
荷兰研究理事会;
关键词
Cardiology; Machine learning; Deep learning; Electrocardiography; Sudden cardiac death; SUDDEN CARDIAC DEATH; SURVIVAL; RISK; CHALLENGES; ALTERNANS;
D O I
10.1016/j.ebiom.2023.104937
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Risk stratification for ventricular arrhythmias currently relies on static measurements that fail to adequately capture dynamic interactions between arrhythmic substrate and triggers over time. We trained and internally validated a dynamic machine learning (ML) model and neural network that extracted features from longitudinally collected electrocardiograms (ECG), and used these to predict the risk of malignant ventricular arrhythmias. Methods A multicentre study in patients implanted with an implantable cardioverter-defibrillator (ICD) between 2007 and 2021 in two academic hospitals was performed. Variational autoencoders (VAEs), which combine neural networks with variational inference principles, and can learn patterns and structure in data without explicit labelling, were trained to encode the mean ECG waveforms from the limb leads into 16 variables. Supervised dynamic ML models using these latent ECG representations and clinical baseline information were trained to predict malignant ventricular arrhythmias treated by the ICD. Model performance was evaluated on a hold-out set, using time-dependent receiver operating characteristic (ROC) and calibration curves. Findings 2942 patients (61.7 +/- 13.9 years, 25.5% female) were included, with a total of 32,129 ECG recordings during a mean follow-up of 43.9 +/- 35.9 months. The mean time-varying area under the ROC curve for the dynamic model was 0.738 +/- 0.07, compared to 0.639 +/- 0.03 for a static (i.e. baseline-only model). Feature analyses indicated dynamic changes in latent ECG representations, particularly those affecting the T-wave morphology, were of highest importance for model predictions. Interpretation Dynamic ML models and neural networks effectively leverage routinely collected longitudinal ECG recordings for personalised and updated predictions of malignant ventricular arrhythmias, outperforming static models. Funding This publication is part of the project DEEP RISK ICD (with project number 452019308) of the research programme Rubicon which is (partly) financed by the Dutch Research Council (NWO). This research is partly funded by the Amsterdam Cardiovascular Sciences (personal grant F.V.Y.T). Copyright (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Patients with Pacemaker or Implantable Cardioverter-Defibrillator
    Schulman, Peter M.
    Rozner, Marc A.
    Sera, Valerie
    Stecker, Eric C.
    MEDICAL CLINICS OF NORTH AMERICA, 2013, 97 (06) : 1051 - +
  • [32] TREATMENT OF MALIGNANT VENTRICULAR ARRHYTHMIAS WITH ENDOCARDIAL RESECTION AND IMPLANTATION OF THE AUTOMATIC CARDIOVERTER-DEFIBRILLATOR
    PLATIA, EV
    GRIFFITH, LSC
    WATKINS, L
    MOWER, MM
    GUARNIERI, T
    MIROWSKI, M
    REID, PR
    NEW ENGLAND JOURNAL OF MEDICINE, 1986, 314 (04): : 213 - 216
  • [33] Predictive value of gamma-glutamyltransferase for ventricular arrhythmias and cardiovascular mortality in implantable cardioverter-defibrillator patients
    You Zhou
    Shuang Zhao
    Keping Chen
    Wei Hua
    Shu Zhang
    BMC Cardiovascular Disorders, 19
  • [34] MALIGNANT VENTRICULAR ARRHYTHMIA IN SYSTEMIC-SCLEROSIS CONTROLLED WITH AN IMPLANTABLE CARDIOVERTER-DEFIBRILLATOR
    MARTINEZTABOADA, V
    OLALLA, J
    BLANCO, R
    ARMONA, J
    SUEIRO, JF
    RODRIGUEZVALVERDE, V
    JOURNAL OF RHEUMATOLOGY, 1994, 21 (11) : 2166 - 2167
  • [35] Ventricular Arrhythmias and Implantable Cardioverter-Defibrillator Use in Patients with Left-Ventricular Assist Device: Validation of the VT-LVAD Prediction Score
    Massie, E.
    Boulet, J.
    De Marco, C.
    Noly, P.
    Mondesert, B.
    Ducharme, A.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2022, 41 (04): : S357 - S357
  • [36] Safety of not using the implantable cardioverter-defibrillator in patients with haemodynamically stable sustained ventricular tachycardia
    Lau, EW
    Pathmanathan, RK
    Ng, GA
    Clune, MM
    Cooper, J
    Griffith, MJ
    CIRCULATION, 2000, 102 (18) : 524 - 524
  • [37] Anxiety and Risk of Ventricular Arrhythmias or Mortality in Patients With an Implantable Cardioverter Defibrillator
    Habibovic, Mirela
    Pedersen, Susanne S.
    van den Broek, Krista C.
    Theuns, Dominic A. M. J.
    Jordaens, Luc
    van der Voort, Pepijn H.
    Alings, Marco
    Denollet, Johan
    PSYCHOSOMATIC MEDICINE, 2013, 75 (01): : 36 - 41
  • [38] The Effect of Air Pollution on Ventricular Arrhythmias in Patients with Implantable Cardioverter Defibrillator
    Shahabi, Javad
    Azhari, Amirhossein
    Safari, Mohsen
    Rahimi-Pordanjani, Amin
    RESEARCH IN CARDIOVASCULAR MEDICINE, 2023, 12 (04) : 108 - 111
  • [39] Implantable cardioverter-defibrillator shocks in patients with a left ventricular assist device
    Ambardekar, Amrut V.
    Allen, Larry A.
    Lindenfeld, JoAnn
    Lowery, Christopher M.
    Cannon, Anne P.
    Cleveland, Joseph C., Jr.
    Brieke, Andreas
    Sauer, William H.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2010, 29 (07): : 771 - 776
  • [40] Relative effectiveness of the implantable cardioverter-defibrillator and antiarrhythmic drugs in patients with varying degrees of left ventricular dysfunction who have survived malignant ventricular arrhythmias
    Domanski, MJ
    Sakseena, S
    Epstein, AE
    Hallstrom, AP
    Brodsky, MA
    Kim, S
    Lancaster, S
    Schron, E
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 1999, 34 (04) : 1090 - 1095