LACEABILITY PROPERTIES IN THE IMAGE GRAPH OF PRISM GRAPHS

被引:0
|
作者
Gomathi, P. [1 ]
Murali, R. [2 ]
机构
[1] BMS Coll Engn, Dept Math, Bengaluru, India
[2] Dr Ambedkar Inst Technol, Dept Math, Bengaluru, India
关键词
Hamiltonian graph; Hamiltonian laceable graph; Hamiltonian-t-laceable graph; Prism graph; Image graph;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A connected graph G is termed Hamiltonian-t-laceable if there exists in it a Hamiltonian path between every pair of vertices u and v with the property d(u, v) = t, 1 <= t <= diam(G), where t is a positive integer. In this paper, we establish laceability properties in the image graph of Prism graph Im(Yn).
引用
收藏
页码:1396 / 1407
页数:12
相关论文
共 50 条
  • [41] Minimal forbidden graphs of reducible additive hereditary graph properties
    Drgas-Burchardt, Ewa
    Haluszczak, Mariusz
    Milok, Peter
    ARS COMBINATORIA, 2010, 95 : 487 - 497
  • [42] ON STRUCTURAL AND GRAPH THEORETIC PROPERTIES OF HIGHER ORDER DELAUNAY GRAPHS
    Abellanas, Manuel
    Bose, Prosenjit
    Garcia, Jesus
    Hurtado, Ferran
    Nicolas, Carlos M.
    Ramos, Pedro
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2009, 19 (06) : 595 - 615
  • [43] Constructing universal graphs for induced-hereditary graph properties
    Broere, Izak
    Heidema, Johannes
    Mihok, Peter
    MATHEMATICA SLOVACA, 2013, 63 (02) : 191 - 200
  • [44] Graph-Related Properties for Comparing Dynamic Call Graphs
    Burch, Michael
    JOURNAL OF COMPUTER LANGUAGES, 2020, 58
  • [45] Topological Graph Layouts into a Triangular Prism
    Miyauchi, Miki
    DISCRETE AND COMPUTATIONAL GEOMETRY AND GRAPHS, JCDCGG 2015, 2016, 9943 : 241 - 246
  • [46] THE SPLIT DOMINATION NUMBER OF A PRISM GRAPH
    Chaluvaraju, B.
    Appajigowda, C.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2015, 16 (01): : 67 - 76
  • [47] On Hamiltonian Cycles in the Prism Over the Odd Graphs
    Bueno, Leticia R.
    Horak, Peter
    JOURNAL OF GRAPH THEORY, 2011, 68 (03) : 177 - 188
  • [48] Maximal independent sets in complementary prism graphs
    Barbosa, Rommel M.
    Cappelle, Marcia R.
    Coelho, Erika M. M.
    ARS COMBINATORIA, 2018, 137 : 283 - 294
  • [49] CONVEX AND WEAKLY CONVEX DOMINATION IN PRISM GRAPHS
    Rosicka, Monika
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (03) : 741 - 755
  • [50] GRACEFUL AND HARMONIOUS LABELINGS OF PRISM RELATED GRAPHS
    GALLIAN, JA
    PROUT, J
    WINTERS, S
    ARS COMBINATORIA, 1992, 34 : 213 - 222