Online parameter estimation for the McKean-Vlasov stochastic differential equation

被引:9
|
作者
Sharrock, Louis [1 ,2 ]
Kantas, Nikolas [3 ]
Parpas, Panos [3 ]
Pavliotis, Grigorios A. [3 ]
机构
[1] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YR, England
[2] Univ Bristol, Sch Math, Bristol BS8 1UG, England
[3] Imperial Coll London, Dept Math, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
McKean-Vlasov equation; Maximum likelihood; Parameter estimation; Stochastic gradient descent; MAXIMUM-LIKELIHOOD-ESTIMATION; DISTRIBUTION DEPENDENT SDES; SELF-STABILIZING PROCESSES; GRANULAR MEDIA EQUATIONS; DIFFUSION-APPROXIMATION; POISSON EQUATION; NEURAL-NETWORKS; SMALL VARIANCE; CONVERGENCE; MODEL;
D O I
10.1016/j.spa.2023.05.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We analyse the problem of online parameter estimation for a stochastic McKean-Vlasov equation, and the associated system of weakly interacting particles. We propose an online estimator for the parameters of the McKean-Vlasov SDE, or the interacting particle system, which is based on a continuous-time stochastic gradient ascent scheme with respect to the asymptotic log-likelihood of the interacting particle system. We characterise the asymptotic behaviour of this estimator in the limit as t & RARR; oo, and also in the joint limit as t & RARR; oo and N & RARR; oo. In these two cases, we obtain almost sure or L1 convergence to the stationary points of a limiting contrast function, under suitable conditions which guarantee ergodicity and uniform-in-time propagation of chaos. We also establish, under the additional condition of global strong concavity, L2 convergence to the unique maximiser of the asymptotic log-likelihood of the McKean-Vlasov SDE, with an asymptotic convergence rate which depends on the learning rate, the number of observations, and the dimension of the non-linear process. Our theoretical results are supported by two numerical examples, a linear mean field model and a stochastic opinion dynamics model.& COPY; 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:481 / 546
页数:66
相关论文
共 50 条
  • [31] Inference for ergodic McKean-Vlasov stochastic differential equations with polynomial interactions
    Genon-Catalot, Valentine
    Laredo, Catherine
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (04): : 2668 - 2693
  • [32] LEAST SQUARES ESTIMATION FOR DELAY MCKEAN-VLASOV STOCHASTIC DIFFERENTIAL EQUATIONS AND INTERACTING PARTICLE SYSTEMS
    Zhu, Min
    Hu, Yanyan
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2022, 20 (01) : 265 - 296
  • [33] NONLINEAR FILTERING THEORY FOR MCKEAN-VLASOV TYPE STOCHASTIC DIFFERENTIAL EQUATIONS
    Sen, Nevroz
    Caines, Peter E.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (01) : 153 - 174
  • [34] Macroscopic limits for stochastic partial differential equations of McKean-Vlasov type
    Kotelenez, Peter M.
    Kurtz, Thomas G.
    PROBABILITY THEORY AND RELATED FIELDS, 2010, 146 (1-2) : 189 - 222
  • [35] On ergodic measures for McKean-Vlasov stochastic equations
    Veretennikov, AY
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2004, 2006, : 471 - 486
  • [36] Convergence to equilibrium for a degenerate McKean-Vlasov equation
    Duong, Manh Hong
    Einav, Amit
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (12)
  • [37] Stochastic averaging principle for multi-valued McKean-Vlasov stochastic differential equations
    Shen, Guangjun
    Xiang, Jie
    Wu, Jiang-Lun
    APPLIED MATHEMATICS LETTERS, 2023, 141
  • [38] HOUSEHOLD EPIDEMIC MODELS AND MCKEAN-VLASOV POISSON DRIVEN STOCHASTIC DIFFERENTIAL EQUATIONS
    Forien, Raphael
    Pardoux, Etienne
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (02): : 1210 - 1233
  • [39] EXPLICIT NUMERICAL APPROXIMATIONS FOR MCKEAN-VLASOV NEUTRAL STOCHASTIC DIFFERENTIAL DELAY EQUATIONS
    Cui, Yuanping
    Li, Xiaoyue
    Liu, Yi
    Yuan, Chenggui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (05): : 797 - 827
  • [40] Maximum likelihood estimation for small noise multi-scale McKean-Vlasov stochastic differential equations
    Xu, Jie
    Zheng, Qiao
    Mu, Jianyong
    BERNOULLI, 2025, 31 (01) : 783 - 815