Intercalation Effects on the Dielectric Properties of PVDF/Ti3C2Tx MXene Nanocomposites

被引:16
|
作者
Tsyganov, Alexey [1 ]
Vikulova, Maria [1 ]
Artyukhov, Denis [2 ]
Zheleznov, Denis [1 ]
Gorokhovsky, Alexander [1 ]
Gorshkov, Nikolay [1 ]
机构
[1] Yuri Gagarin State Tech Univ Saratov, Dept Chem & Technol Mat, 77 Polytecnicheskaya St, Saratov 410054, Russia
[2] Yuri Gagarin State Tech Univ Saratov, Dept Power & Elect Engn, 77 Polytecnicheskaya St, Saratov 410054, Russia
基金
俄罗斯科学基金会;
关键词
MXene; Ti3C2Tx; high-k polymer nanocomposite; permittivity; dielectric loss; dielectric properties; polyvinylidene difluoride; conductive filler; COMPOSITES; PERMITTIVITY; PERFORMANCE; POWDER; PHASES;
D O I
10.3390/nano13081337
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, we report the effect of intercalation of dimethyl sulfoxide (DMSO) and urea molecules into the interlayer space of Ti3C2Tx MXene on the dielectric properties of poly(vinylidene fluoride) (PVDF)/MXene polymer nanocomposites. MXenes were obtained by a simple hydrothermal method using Ti3AlC2 and a mixture of HCl and KF, and they were then intercalated with DMSO and urea molecules to improve the exfoliation of the layers. Then, nanocomposites based on a PVDF matrix loading of 5-30 wt.% MXene were fabricated by hot pressing. The powders and nanocomposites obtained were characterized by using XRD, FTIR, and SEM. The dielectric properties of the nanocomposites were studied by impedance spectroscopy in the frequency range of 10(2)-10(6) Hz. As a result, the intercalation of MXene with urea molecules made it possible to increase the permittivity from 22 to 27 and to slightly decrease the dielectric loss tangent at a filler loading of 25 wt.% and a frequency of 1 kHz. The intercalation of MXene with DMSO molecules made it possible to achieve an increase in the permittivity up to 30 at a MXene loading of 25 wt.%, but the dielectric loss tangent was increased to 0.11. A discussion of the possible mechanisms of MXene intercalation influence on the dielectric properties of PVDF/Ti3C2Tx MXene nanocomposites is presented.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Electronic and mechanical properties of individual Ti3C2Tx MXene monolayer flakes
    Sinitskii, Alexander
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [42] Layer-dependent frictional properties of Ti3C2Tx MXene nanosheets
    Pendyala, Prashant
    Lee, Juyun
    Kim, Seon Joon
    Yoon, Eui-Sung
    APPLIED SURFACE SCIENCE, 2022, 603
  • [43] NiO/Ti3C2Tx MXene nanocomposites sensor for ammonia gas detection at room temperature
    Yang, Jiacheng
    Gui, Yingang
    Wang, Yunfeng
    He, Shasha
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2023, 119 : 476 - 484
  • [44] Biodegradable PLA/CNTs/Ti3C2Tx MXene nanocomposites for efficient electromagnetic interference shielding
    Yafei Wang
    Luyang Liang
    Ziran Du
    Yaming Wang
    Chuntai Liu
    Changyu Shen
    Journal of Materials Science: Materials in Electronics, 2021, 32 : 25952 - 25962
  • [45] Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers
    Lipatov, Alexey
    Lu, Haidong
    Alhabeb, Mohamed
    Anasori, Babak
    Gruverman, Alexei
    Gogotsi, Yury
    Sinitskii, Alexander
    SCIENCE ADVANCES, 2018, 4 (06):
  • [46] Fabrication on the annealed Ti3C2Tx MXene/Epoxy nanocomposites for electromagnetic interference shielding application
    Wang, Lei
    Chen, Lixin
    Song, Ping
    Liang, Chaobo
    Lu, Yuanjin
    Qiu, Hua
    Zhang, Yali
    Kong, Jie
    Gu, Junwei
    COMPOSITES PART B-ENGINEERING, 2019, 171 : 111 - 118
  • [47] Biodegradable PLA/CNTs/Ti3C2Tx MXene nanocomposites for efficient electromagnetic interference shielding
    Wang, Yafei
    Liang, Luyang
    Du, Ziran
    Wang, Yaming
    Liu, Chuntai
    Shen, Changyu
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (21) : 25952 - 25962
  • [48] Enhanced dielectric properties of homogeneous Ti3C2Tx MXene@SiO2/polyvinyl alcohol composite films
    Wan, Wei
    Tao, Meizhen
    Cao, Hailin
    Zhao, Yuqing
    Luo, Junrong
    Yang, Jian
    Qiu, Tai
    CERAMICS INTERNATIONAL, 2020, 46 (09) : 13862 - 13868
  • [49] Ti3C2Tx MXene/polyaniline (PANI) sandwich intercalation structure composites constructed for microwave absorption
    Wei, Huawei
    Dong, Jidong
    Fang, Xiaojiao
    Zheng, Wenhui
    Sun, Yutong
    Qian, Yue
    Jiang, Zaixing
    Huang, Yudong
    COMPOSITES SCIENCE AND TECHNOLOGY, 2019, 169 : 52 - 59
  • [50] Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte
    Lin, Zifeng
    Barbara, Daffos
    Taberna, Pierre-Louis
    Van Aken, Katherine L.
    Anasori, Babak
    Gogotsi, Yury
    Simon, Patrice
    JOURNAL OF POWER SOURCES, 2016, 326 : 575 - 579