Network intrusion detection using feature fusion with deep learning

被引:4
|
作者
Ayantayo, Abiodun [1 ]
Kaur, Amrit [1 ]
Kour, Anit [1 ]
Schmoor, Xavier [1 ,2 ]
Shah, Fayyaz [2 ]
Vickers, Ian [2 ]
Kearney, Paul [1 ]
Abdelsamea, Mohammed M. [3 ,4 ]
机构
[1] Birmingham City Univ, Sch Comp & Digital Technol, Birmingham, England
[2] METCLOUD LTD, Birmingham, England
[3] Assiut Univ, Fac Comp & Informat, Assiut, Egypt
[4] Univ Exeter, Dept Comp Sci, Exeter, England
关键词
Feature fusion; Deep learning; Fully-connected networks; Network intrusion detection; UNSW-NB15 DATA SET; MACHINE;
D O I
10.1186/s40537-023-00834-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Network intrusion detection systems (NIDSs) are one of the main tools used to defend against cyber-attacks. Deep learning has shown remarkable success in network intrusion detection. However, the effect of feature fusion has yet to be explored in how to boost the performance of the deep learning model and improve its generalisation capability in NIDS. In this paper, we propose novel deep learning architectures with different feature fusion mechanisms aimed at improving the performance of the multi-classification components of NIDS. We propose three different deep learning models, which we call early-fusion, late-fusion, and late-ensemble learning models using feature fusion with fully connected deep networks. Our feature fusion mechanisms were designed to encourage deep learning models to learn relationships between different input features more efficiently and mitigate any potential bias that may occur with a particular feature type. To assess the efficacy of our deep learning solutions and make comparisons with state-of-the-art models, we employ the widely accessible UNSW-NB15 and NSL-KDD datasets specifically designed to enhance the development and evaluation of improved NIDSs. Through quantitative analysis, we demonstrate the resilience of our proposed models in effectively addressing the challenges posed by multi-classification tasks, especially in the presence of class imbalance issues. Moreover, our late-fusion and late-ensemble models showed the best generalisation behaviour (against overfitting) with similar performance on the training and validation sets.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Multi-Channel Deep Feature Learning for Intrusion Detection
    Andresini, Giuseppina
    Appice, Annalisa
    Di Mauro, Nicola
    Loglisci, Corrado
    Malerba, Donato
    IEEE ACCESS, 2020, 8 : 53346 - 53359
  • [42] Recurrent deep learning-based feature fusion ensemble meta-classifier approach for intelligent network intrusion detection system
    Ravi, Vinayakumar
    Chaganti, Rajasekhar
    Alazab, Mamoun
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 102
  • [43] Research on Feature Selection of Intrusion Detection Based on Deep Learning
    Xin, Mingyuan
    Wang, Yong
    2020 16TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE, IWCMC, 2020, : 1431 - 1434
  • [44] Deep Learning Feature Fusion Approach for an Intrusion Detection System in SDN-Based IoT Networks
    Ravi V.
    Chaganti R.
    Alazab M.
    IEEE Internet of Things Magazine, 2022, 5 (02): : 24 - 29
  • [45] Indoor intrusion detection based on deep signal feature fusion and minimized-MKMMD transfer learning
    Zhou, Mu
    Li, Xinyue
    Wang, Yong
    Li, Yaoping
    Ren, Aihu
    PHYSICAL COMMUNICATION, 2020, 42
  • [46] Design of Network Intrusion Detection System Using Lion Optimization-Based Feature Selection with Deep Learning Model
    Alghamdi, Rayed
    MATHEMATICS, 2023, 11 (22)
  • [47] An Effective Intrusion Detection System for Securing IoT Using Feature Selection and Deep Learning
    Parimala, G.
    Kayalvizhi, R.
    2021 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2021,
  • [48] Intrusion Detection using Deep Belief Network
    Raza, Kamran
    Adil, Syed Hasan
    MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, 2014, 33 (04) : 485 - 491
  • [49] Network intrusion detection methods based on deep learning
    Li X.
    Zhang S.
    Recent Patents on Engineering, 2021, 15 (04):
  • [50] Deep Learning Applications for Intrusion Detection in Network Traffic
    Getman, A. I.
    Rybolovlev, D. A.
    Nikolskaya, A. G.
    PROGRAMMING AND COMPUTER SOFTWARE, 2024, 50 (07) : 493 - 510