Scattering for the Radial Schrodinger Equation with Combined Power-type and Choquard-type Nonlinearities

被引:0
|
作者
Wang, Ying [1 ]
Xu, Cheng Bin [2 ]
机构
[1] China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
[2] Qinghai Normal Univ, Sch Math & Stat, Xining 810008, Peoples R China
关键词
Schrodinger equation; Choquard-type; Scattering theory; GLOBAL WELL-POSEDNESS; CAUCHY-PROBLEM; GROUND-STATE; PROOF;
D O I
10.1007/s10114-023-2570-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show the scattering of the radial solution for the nonlinear Schrodinger equation with combined power-type and Choquard-type nonlinearities iu(t) + Delta u = lambda(1)vertical bar u vertical bar(p1-1)u + lambda(2)(I-alpha * vertical bar u vertical bar(p2))vertical bar u vertical bar(p2-2)u. in the energy space H-1 (R-N) for lambda(1)lambda(2) = - 1. We establish a scattering criterion for radial solution together with Morawetz estimate which implies the scattering theory. Results show that the defocusing perturbation terms does not determine the scattering solution in energy space.
引用
收藏
页码:1029 / 1041
页数:13
相关论文
共 50 条
  • [21] Nonlinear Schrdinger equation with combined power-type nonlinearities and harmonic potential
    徐润章
    徐闯
    Applied Mathematics and Mechanics(English Edition), 2010, 31 (04) : 521 - 528
  • [22] Nonlinear Schrödinger equation with combined power-type nonlinearities and harmonic potential
    Run-zhang Xu
    Chuang Xu
    Applied Mathematics and Mechanics, 2010, 31 : 521 - 528
  • [23] Well-posedness of nonlinear wave equation with combined power-type nonlinearities
    Xu Runzhang
    Xu Chuang
    Liu Yang
    Yu Tao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (08) : 869 - 895
  • [24] Wellposedness for semirelativistic Schrodinger equation with power-type nonlinearity
    Shi, Qihong
    Peng, Congming
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 178 : 133 - 144
  • [25] Normalized ground state solutions for the Chern-Simons-Schrodinger equations with mixed Choquard-type nonlinearities
    Qiu, Yipeng
    Xiao, Yingying
    Zhao, Yan
    Xu, Shengyue
    AIMS MATHEMATICS, 2024, 9 (12): : 35293 - 35307
  • [26] Global existence for a coupled system of Schrodinger equations with power-type nonlinearities
    Nguyen, Nghiem V.
    Tian, Rushun
    Deconinck, Bernard
    Sheils, Natalie
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (01)
  • [27] Scattering for focusing combined power-type NLS
    Jian Xie
    Acta Mathematica Sinica, English Series, 2014, 30 : 805 - 826
  • [28] Scattering for Focusing Combined Power-type NLS
    Jian XIE
    ActaMathematicaSinica(EnglishSeries), 2014, 30 (05) : 805 - 826
  • [29] Scattering for focusing combined power-type NLS
    Xie, Jian
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (05) : 805 - 826
  • [30] On quenching for some parabolic problems with combined power-type nonlinearities
    Xu Runzhang
    Jin Chunyan
    Yu Tao
    Liu Yacheng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (01) : 333 - 339