Rational construction of graphitic carbon nitride composited Li-rich Mn-based oxide cathode materials toward high-performance Li-ion battery

被引:12
|
作者
Ji, Yu-Rui [1 ,3 ]
Chen, Yu-Hao [1 ,3 ]
Wang, Peng-Fei [1 ,3 ]
Lai, Qin-Zhi [1 ,3 ]
Qiu, Feilong [2 ]
Zhu, Yan-Rong [1 ,3 ]
Yi, Ting-Feng [1 ,3 ]
机构
[1] Northeastern Univ, Sch Mat Sci & Engn, Shenyang 110819, Peoples R China
[2] East China Normal Univ, Sch Integrated Circuits, Shanghai 200241, Peoples R China
[3] Northeastern Univ Qinhuangdao, Sch Resources & Mat, Key Lab Dielect & Electrolyte Funct Mat Hebei Prov, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-rich cobalt-free cathode; Rate performance; Reaction kinetics; ELECTROCHEMICAL PERFORMANCE; STABILITY; IMPROVEMENT;
D O I
10.1016/j.jcis.2023.08.118
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li-rich Mn-based oxides (LRMOs) are considered as one of the most-promising cathode materials for next generation Li-ion batteries (LIBs) because of their high energy density. Nevertheless, the intrinsic shortcomings, such as the low first coulomb efficiency, severe capacity/voltage fade, and poor rate performance seriously limit its commercial application in the future. In this work, we construct successfully g-C3N4 coating layer to modify Li1.2Mn0.54Ni0.13Co0.13O2 (LMNC) via a facile solution. The g-C3N4 layer can alleviate the side-reaction between electrolyte and LMNC materials, and improve electronic conduction of LMNC. In addition, the g-C3N4 layer can suppress the collapse of structure and improve cyclic stability of LMNC materials. Consequently, g-C3N4 (4 wt %)-coated LMNC sample shows the highest initial coulomb efficiency (78.5%), the highest capacity retention ratio (78.8%) and the slightest voltage decay (0.48 V) after 300 loops. Besides, it also can provide high reversible capacity of about 300 and 93 mAh g-1 at 0.1 and 10C, respectively. This work proposes a novel approach to achieve next-generation high-energy density cathode materials, and g-C3N4 (4 wt%)-coated LMNC shows an enormous potential as the cathode materials for next generation LIBs with excellent performance.
引用
收藏
页码:577 / 589
页数:13
相关论文
共 50 条
  • [31] Constructing high performance Li-rich Mn-based cathode via surface phase structure controlling and ion doping
    Cao, Shuang
    Chen, Jiarui
    Li, Heng
    Li, Zhi
    Guo, Changmeng
    Chen, Gairong
    Guo, Xiaowei
    Wang, Xianyou
    JOURNAL OF POWER SOURCES, 2023, 555
  • [32] Insights into Li-Rich Mn-Based Cathode Materials with High Capacity: from Dimension to Lattice to Atom
    Cui, Shao-Lun
    Gao, Ming-Yue
    Li, Guo-Ran
    Gao, Xue-Ping
    ADVANCED ENERGY MATERIALS, 2022, 12 (04)
  • [33] Surface F-doping for stable structure and high electrochemical performance of Li-rich Mn-based cathode materials
    Wang, Bo
    Cui, Jing
    Li, Zhaojin
    Wang, Huan
    Zhang, Di
    Wang, Qiujun
    Sun, Huilan
    Hu, Zhilin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 929
  • [34] Selective doping of Li-rich layered oxide cathode materials for high-stability rechargeable Li-ion batteries
    Han, Dongwook
    Park, Kwangjin
    Park, Jun-Ho
    Yun, Dong-Jin
    Son, You-Hwan
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2018, 68 : 180 - 186
  • [35] A Universal Strategy toward the Precise Regulation of Initial Coulombic Efficiency of Li-Rich Mn-Based Cathode Materials
    Guo, Weibin
    Zhang, Chenying
    Zhang, Yinggan
    Lin, Liang
    He, Wei
    Xie, Qingshui
    Sa, Baisheng
    Wang, Laisen
    Peng, Dong-Liang
    ADVANCED MATERIALS, 2021, 33 (38)
  • [36] Li-rich layered oxide single crystal with Na doping as a high-performance cathode for Li ion batteries
    Xu, Chunying
    Li, Jili
    Sun, Jie
    Zhang, Wanzhen
    Ji, Baoming
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 895
  • [37] Cation doping for enhanced layer spacing and electrochemical performance in Li-rich Mn-based lithium-ion cathode materials
    Wang, Jin-Yue
    Xie, Yu-Long
    Yang, Shang-Mei
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 967
  • [38] Surface modulation induced oxygen vacancies/stacking faults and spinel-carbon composite coatings toward high-performance Li-rich Mn-based cathode
    Kou, Pengzu
    Zhang, Zhigui
    Dong, Zhaoyang
    Zheng, Runguo
    Song, Zhishuang
    Wang, Zhiyuan
    Sun, Hongyu
    Liu, Yanguo
    APPLIED SURFACE SCIENCE, 2025, 679
  • [39] An Li-rich oxide cathode material with mosaic spinel grain and a surface coating for high performance Li-ion batteries
    Liu, Hui
    Du, Chunyu
    Yin, Geping
    Song, Bai
    Zuo, Pengjian
    Cheng, Xinqun
    Ma, Yulin
    Gao, Yunzhi
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (37) : 15640 - 15646
  • [40] Strain Mechanism Study on Li-rich Layered Cathode Materials Li-Ni-Mn-O for Li-ion Batteries
    Liu, Jihong
    Zhu, Jiapeng
    Zhang, Xu
    Zhang, Jiyang
    Huang, Chaoyang
    Jia, Guixiao
    An, Shengli
    ACTA CHIMICA SINICA, 2025, 83 (02) : 101 - 109