An Efficient Method based on Multi-view Semantic Alignment for Cross-view Geo-localization

被引:0
|
作者
Wang, Yifeng [1 ]
Xia, Yamei [1 ]
Lu, Tianbo [1 ]
Zhang, Xiaoyan [1 ]
Yao, Wenbin [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Comp Sci, Natl Pilot Software EngineeringSch, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Geo-localization; Image Retrieval; Transformer; Semantic Alignment;
D O I
10.1109/IJCNN54540.2023.10191537
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-view geo-localization is to retrieve the most relevant images from different views. The biggest challenge is the visual differences between different views and the location shifts in practical applications. Existing methods usually extract fine-grained features of the retrieval target and match them by semantic alignment. The Transformer-based approach can focus on more contextual information than the CNN-based approach and also learn the geometric correspondence between two viewpoint images directly through the location encoding information. However, the existing methods need to fully utilize the information from different viewpoints, and the model needs to understand the context information sufficiently. To address these issues, we propose an efficient method to fully use image information from cross-views and feature fusion, divided into two branches: Aerial-View Local-Feature Cross-Fusion(ALCF) and Multi-View Global-feature Cross-Fusion(MGCF). By observing the characteristics of the aerial and street views, we perform a targeted fusion of global and local features from different viewpoints. In addition, we introduce a multi-view semantic alignment module, which can solve the problem that more noise information is introduced when the aerial view and street view images are semantically aligned. Experiments show that our proposed method achieves excellent performance in both the drone viewpoint target localization and drone navigation tasks on the University-1652 dataset.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Learning Cross-View Visual Geo-Localization Without Ground Truth
    Li, Haoyuan
    Xu, Chang
    Yang, Wen
    Yu, Huai
    Xia, Gui-Song
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 1
  • [32] Bridging Viewpoints in Cross-View Geo-Localization With Siamese Vision Transformer
    Ahn, Woo-Jin
    Park, So-Yeon
    Pae, Dong-Sung
    Choi, Hyun-Duck
    Lim, Myo-Taeg
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 1
  • [33] Joint Representation Learning and Keypoint Detection for Cross-View Geo-Localization
    Lin, Jinliang
    Zheng, Zhedong
    Zhong, Zhun
    Luo, Zhiming
    Li, Shaozi
    Yang, Yi
    Sebe, Nicu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 3780 - 3792
  • [34] LIGHTWEIGHT CNN FOR CROSS-VIEW GEO-LOCALIZATION USING AERIAL IMAGE
    Yagi, Ryota
    Iwasaki, Akira
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6266 - 6269
  • [35] MUTUAL RELATIVE POSITION LEARNING TRANSFORMER FOR CROSS-VIEW GEO-LOCALIZATION
    Gu, Bo
    Ling, Hefei
    Shi, Yuxuan
    Li, Zongyi
    Zhao, Chuang
    Li, Ping
    Cao, Qiang
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 286 - 290
  • [36] Leveraging cross-view geo-localization with ensemble learning and temporal awareness
    Ghanem, Abdulrahman
    Abdelhay, Ahmed
    Salah, Noor Eldeen
    Nour Eldeen, Ahmed
    Elhenawy, Mohammed
    Masoud, Mahmoud
    Hassan, Ammar M. M.
    Hassan, Abdallah A. A.
    PLOS ONE, 2023, 18 (03):
  • [37] Learning Robust Feature Representation for Cross-View Image Geo-Localization
    Gan, Wenjian
    Zhou, Yang
    Hu, Xiaofei
    Zhao, Luying
    Huang, Gaoshuang
    Hou, Mingbo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [38] Spatial-Aware Feature Aggregation for Cross-View Image based Geo-Localization
    Shi, Yujiao
    Liu, Liu
    Yu, Xin
    Li, Hongdong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [39] Road Extraction Assisted Offset Regression Method in Cross-view Image-based Geo-localization
    Hou, Yuxuan
    Yang, Yi
    Wang, Junbo
    Fu, Mengyin
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 2934 - 2940
  • [40] Navigating the Metaverse: UAV-Based Cross-View Geo-Localization in Virtual Worlds
    Yagi, Ryota
    Yairi, Takehisa
    Iwasaki, Akira
    PROCEEDINGS OF THE 2023 WORKSHOP ON UAVS IN MULTIMEDIA: CAPTURING THE WORLD FROM A NEW PERSPECTIVE, UAVM 2023, 2023, : 13 - 17