Multi-Label Retinal Disease Classification Using Transformers

被引:18
|
作者
Rodriguez, Manuel Alejandro [1 ]
AlMarzouqi, Hasan [1 ]
Liatsis, Panos [1 ]
机构
[1] Khalifa Univ, Dept Elect Engn & Comp Sci, Abu Dhabi 127788, U Arab Emirates
关键词
Multi-label; fundus imaging; disease classification; transformer; deep learning; BLOOD-VESSELS; IMAGES; ENSEMBLE;
D O I
10.1109/JBHI.2022.3214086
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Early detection of retinal diseases is one of the most important means of preventing partial or permanent blindness in patients. In this research, a novel multi-label classification system is proposed for the detection of multiple retinal diseases, using fundus images collected from a variety of sources. First, a new multi-label retinal disease dataset, the MuReD dataset, is constructed, using a number of publicly available datasets for fundus disease classification. Next, a sequence of post-processing steps is applied to ensure the quality of the image data and the range of diseases, present in the dataset. For the first time in fundus multi-label disease classification, a transformer-based model optimized through extensive experimentation is used for image analysis and decision making. Numerous experiments are performed to optimize the configuration of the proposed system. It is shown that the approach performs better than state-of-the-art works on the same task by 7.9% and 8.1% in terms of AUC score for disease detection and disease classification, respectively. The obtained results further support the potential applications of transformer-based architectures in the medical imaging field.
引用
收藏
页码:2739 / 2750
页数:12
相关论文
共 50 条
  • [41] Improving SVM Based Multi-label Classification by Using Label Relationship
    Fu, Di
    Zhou, Bo
    Hu, Jinglu
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [42] A label propagation algorithm for multi-label classification using hadoop technology
    Sun, Xia
    Zhang, Minchao
    Feng, Jun
    Zhang, Lei
    He, Feijuan
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2015, 49 (05): : 134 - 139
  • [43] Multi-label text classification using multinomial models
    Vilar, D
    Castro, MJ
    Sanchis, E
    ADVANCES IN NATURAL LANGUAGE PROCESSING, 2004, 3230 : 220 - 230
  • [44] Modeling label dependence for multi-label classification using the Choquistic regression
    Tehrani, Ali Fallah
    Ahrens, Diane
    PATTERN RECOGNITION LETTERS, 2017, 92 : 75 - 80
  • [45] Calibrated Multi-label Classification with Label Correlations
    Zhi-Fen He
    Ming Yang
    Hui-Dong Liu
    Lei Wang
    Neural Processing Letters, 2019, 50 : 1361 - 1380
  • [46] Robust label compression for multi-label classification
    Zhang, Ju-Jie
    Fang, Min
    Wu, Jin-Qiao
    Li, Xiao
    KNOWLEDGE-BASED SYSTEMS, 2016, 107 : 32 - 42
  • [47] Calibrated Multi-label Classification with Label Correlations
    He, Zhi-Fen
    Yang, Ming
    Liu, Hui-Dong
    Wang, Lei
    NEURAL PROCESSING LETTERS, 2019, 50 (02) : 1361 - 1380
  • [48] Label prompt for multi-label text classification
    Song, Rui
    Liu, Zelong
    Chen, Xingbing
    An, Haining
    Zhang, Zhiqi
    Wang, Xiaoguang
    Xu, Hao
    APPLIED INTELLIGENCE, 2023, 53 (08) : 8761 - 8775
  • [49] Label prompt for multi-label text classification
    Rui Song
    Zelong Liu
    Xingbing Chen
    Haining An
    Zhiqi Zhang
    Xiaoguang Wang
    Hao Xu
    Applied Intelligence, 2023, 53 : 8761 - 8775
  • [50] Multi-label classification by exploiting label correlations
    Yu, Ying
    Pedrycz, Witold
    Miao, Duoqian
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (06) : 2989 - 3004