Unsupervised cross-domain rolling bearing fault diagnosis based on time-frequency information fusion

被引:144
|
作者
Tao, Hongfeng [1 ]
Qiu, Jier [1 ]
Chen, Yiyang [2 ]
Stojanovic, Vladimir [3 ]
Cheng, Long [1 ]
机构
[1] Jiangnan Univ, Key Lab Adv Proc Control Light Ind, Minist Educ, Wuxi 214122, Peoples R China
[2] Univ Southampton, Dept Civil Maritime & Environm Engn, Southampton SO16 7QF, England
[3] Univ Kragujevac, Fac Mech & Civil Engn, Dept Automat Control Robot & Fluid Tech, Kraljevo 36000, Serbia
基金
中国国家自然科学基金;
关键词
CONVOLUTIONAL NEURAL-NETWORK; INTELLIGENCE;
D O I
10.1016/j.jfranklin.2022.11.004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, data-driven methods have been widely used in rolling bearing fault diagnosis with great success, which mainly relies on the same data distribution and massive labeled data. However, bearing equipment is in normal working state for most of the time and operates under variable operating conditions. This makes it difficult to obtain bearing data labels, and the distribution of the collected samples varies widely. To address these problems, an unsupervised cross-domain fault diagnosis method based on time-frequency information fusion is proposed in this paper. Firstly, wavelet packet decompo-sition and reconstruction are carried out on the bearing vibration signal, and the energy eigenvectors of each sub-band are extracted to obtain a 2-D time-frequency map of fault features. Secondly, an unsu-pervised cross-domain fault diagnosis model is constructed, the improved maximum mean discrepancy algorithm is used as the measurement standard, and the joint distribution distance is calculated with the help of pseudo-labels to reduce data distribution differences. Finally, the model is applied to the motor bearing for comparison and verification. The results demonstrate its high diagnosis accuracy and strong robustness.(c) 2022 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1454 / 1477
页数:24
相关论文
共 50 条
  • [41] A wind turbine bearing fault diagnosis method based on fused depth features in time-frequency domain
    Tang, Zhenhao
    Wang, Mengjiao
    Ouyang, Tinghui
    Che, Fei
    ENERGY REPORTS, 2022, 8 : 12727 - 12739
  • [42] Rolling bearing fault diagnosis based on 2D time-frequency images and data augmentation technique
    Fu, Wenlong
    Jiang, Xiaohui
    Li, Bailin
    Tan, Chao
    Chen, Baojia
    Chen, Xiaoyue
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (04)
  • [43] Novel imbalanced subdomain adaption multiscale convolutional network for cross-domain unsupervised fault diagnosis of rolling bearings
    Huo, Tianlong
    Deng, Linfeng
    Zhang, Bo
    Gong, Jun
    Hu, Baoquan
    Zhao, Rongzhen
    Liu, Zheng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (01)
  • [44] Rolling Bearing Fault Diagnosis via ConceFT-Based Time-Frequency Reconfiguration Order Spectrum Analysis
    Liu, Dongdong
    Cheng, Weidong
    Wen, Weigang
    IEEE ACCESS, 2018, 6 : 67131 - 67143
  • [45] Joint time-frequency analysis and its application in the fault diagnosis of rolling-element bearing
    Fu, QY
    Wang, FL
    Li, MZ
    Peng, YC
    Xia, SB
    CONDITION MONITORING '97, 1997, : 267 - 270
  • [46] Rolling bearing fault diagnosis method by using feature extraction of convolutional time-frequency image
    Hou, Junjian
    Lu, Xikang
    Zhong, Yudong
    He, Wenbin
    Zhao, Dengfeng
    Zhou, Fang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2024, 238 (09) : 4212 - 4228
  • [47] A time-frequency spectral amplitude modulation method and its applications in rolling bearing fault diagnosis
    Jiang, Zuhua
    Zhang, Kun
    Xiang, Ling
    Yu, Gang
    Xu, Yonggang
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 185
  • [48] A Hybrid Time-Frequency Analysis Method for Railway Rolling-Element Bearing Fault Diagnosis
    Cheng, Yao
    Zou, Dong
    Zhang, Weihua
    Wang, Zhiwei
    JOURNAL OF SENSORS, 2019, 2019
  • [49] Rolling bearing fault diagnosis based on sensor information fusion and generalized cyclic cross correntropy spectrum density
    Li, Hui
    Hao, Rujiang
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (02): : 200 - 207
  • [50] A Compressed Unsupervised Deep Domain Adaptation Model for Efficient Cross-Domain Fault Diagnosis
    Xu, Gaowei
    Huang, Chenxi
    Silva, Daniel Santos da
    Albuquerque, Victor Hugo C. de
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (05) : 6741 - 6749