Normality Guided Multiple Instance Learning for Weakly Supervised Video Anomaly Detection

被引:13
|
作者
Park, Seongheon [1 ]
Kim, Hanjae [1 ]
Kim, Minsu [1 ]
Kim, Dahye [1 ]
Sohn, Kwanghoon [1 ,2 ]
机构
[1] Yonsei Univ, Seoul 120749, South Korea
[2] Korea Inst Sci & Technol KIST, Seoul, South Korea
来源
2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV) | 2023年
关键词
D O I
10.1109/WACV56688.2023.00269
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Weakly supervised Video Anomaly Detection (wVAD) aims to distinguish anomalies from normal events based on video-level supervision. Most existing works utilize Multiple Instance Learning (MIL) with ranking loss to tackle this task. These methods, however, rely on noisy predictions from a MIL-based classifier for target instance selection in ranking loss, degrading model performance. To overcome this problem, we propose Normality Guided Multiple Instance Learning (NG-MIL) framework, which encodes diverse normal patterns from noise-free normal videos into prototypes for constructing a similarity-based classifier. By ensembling predictions of two classifiers, our method could refine the anomaly scores, reducing training instability from weak labels. Moreover, we introduce normality clustering and normality guided triplet loss constraining inner bag instances to boost the effect of NG-MIL and increase the discriminability of classifiers. Extensive experiments on three public datasets (ShanghaiTech, UCF-Crime, XD-Violence) demonstrate that our method is comparable to or better than existing weakly supervised methods, achieving stateof-the-art results.
引用
收藏
页码:2664 / 2673
页数:10
相关论文
共 50 条
  • [21] Weakly-supervised video anomaly detection via temporal resolution feature learning
    Peng, Shengjun
    Cai, Yiheng
    Yao, Zijun
    Tan, Meiling
    APPLIED INTELLIGENCE, 2023, 53 (24) : 30607 - 30625
  • [22] Semantic-driven dual consistency learning for weakly supervised video anomaly detection
    Su, Yong
    Tan, Yuyu
    An, Simin
    Xing, Meng
    Feng, Zhiyong
    PATTERN RECOGNITION, 2025, 157
  • [23] Evolutionary multiple instance boosting framework for weakly supervised learning
    Bhattacharjee, Kamanasish
    Pant, Millie
    Srivastava, Shilpa
    COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (04) : 3131 - 3141
  • [24] Weakly Supervised Pain Localization using Multiple Instance Learning
    Sikka, Karan
    Dhall, Abhinav
    Bartlett, Marian
    2013 10TH IEEE INTERNATIONAL CONFERENCE AND WORKSHOPS ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG), 2013,
  • [25] Evolutionary multiple instance boosting framework for weakly supervised learning
    Kamanasish Bhattacharjee
    Millie Pant
    Shilpa Srivastava
    Complex & Intelligent Systems, 2022, 8 : 3131 - 3141
  • [26] Weakly supervised video anomaly detection with temporal attention module
    Song, Wonjoon
    Kim, Jonghyun
    Kim, Joongkyu
    2022 37TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC 2022), 2022, : 982 - 985
  • [27] Sequential attention mechanism for weakly supervised video anomaly detection
    Ullah, Waseem
    Ullah, Fath U. Min
    Khan, Zulfiqar Ahmad
    Baik, Sung Wook
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 230
  • [28] Weakly supervised video anomaly detection based on hyperbolic space
    Qi, Meilin
    Wu, Yuanyuan
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [29] Event-driven weakly supervised video anomaly detection
    Sun, Shengyang
    Gong, Xiaojin
    IMAGE AND VISION COMPUTING, 2024, 149
  • [30] A Convolutional Autoencoder Approach for Weakly Supervised Anomaly Video Detection
    Phan Nguyen Duc Hieu
    Phan Duy Hung
    COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2023, 2023, 14162 : 138 - 150