Anomalous Dissipation for the Forced 3D Navier-Stokes Equations

被引:16
|
作者
Brue, Elia [1 ]
De Lellis, Camillo [1 ]
机构
[1] Inst Adv Study, Sch Math, 1 Einstein Dr, Princeton, NJ 08540 USA
关键词
EULER EQUATIONS; ENERGY;
D O I
10.1007/s00220-022-04626-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider the forced incompressible Navier-Stokes equations with vanishing viscosity on the three-dimensional torus. We show that there are (classical) solutions for which the dissipation rate of the kinetic energy is bounded away from zero, uniformly in the viscosity parameter, while the body forces are uniformly bounded in some reasonable regularity class.
引用
收藏
页码:1507 / 1533
页数:27
相关论文
共 50 条
  • [31] Gevrey regularity of solutions to the 3D Navier-Stokes equations
    Biswas, Animikh
    Swanson, David
    Fluids and Waves: Recent Trends in Applied Analysis, 2007, 440 : 83 - 90
  • [32] On endpoint regularity criterion of the 3D Navier-Stokes equations
    Li, Zhouyu
    Zhou, Daoguo
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2021, 18 (01) : 71 - 80
  • [33] On the vorticity direction and the regularity of 3D Navier-Stokes equations
    Berselli, Luigi C.
    NONLINEARITY, 2023, 36 (08) : 4303 - 4313
  • [34] The 3D incompressible Navier-Stokes equations with partial hyperdissipation
    Yang, Wanrong
    Jiu, Quansen
    Wu, Jiahong
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (08) : 1823 - 1836
  • [35] Asymptotic stability of 3D Navier-Stokes equations with damping
    Yang, Rong
    Yang, Xin-Guang
    APPLIED MATHEMATICS LETTERS, 2021, 116 (116)
  • [36] On the geometric regularity conditions for the 3D Navier-Stokes equations
    Chae, Dongho
    Lee, Jihoon
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 151 : 265 - 273
  • [37] Nonuniqueness in law of stochastic 3D Navier-Stokes equations
    Hofmanova, Martina
    Zhu, Rongchan
    Zhu, Xiangchan
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2024, 26 (01) : 163 - 260
  • [38] Remarks on regularity criteria for the 3d Navier-Stokes equations
    Liu, Qiao
    Pan, Meiling
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (03): : 868 - 875
  • [39] On the pressure regularity criterion of the 3D Navier-Stokes equations
    Zhang, Xingwei
    Jia, Yan
    Dong, Bo-Qing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (02) : 413 - 420
  • [40] Exponential mixing for the 3D stochastic Navier-Stokes equations
    Odasso, Cyril
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (01) : 109 - 139