Crucial interactions of functional pyrenes with graphite in electrodes for lithium-ion batteries

被引:0
|
作者
Bauer, Marina [1 ]
Konnerth, Philipp [2 ]
Radinger, Hannes [1 ,3 ]
Pfeifer, Kristina [1 ]
Joshi, Yug [1 ]
Bauer, Felix [1 ]
Ehrenberg, Helmut [1 ]
Scheiba, Frieder [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Appl Mat, Hermann Von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[2] Univ Hohenheim, Dept Convers Technol Biobased Resources, Stuttgart, Germany
[3] Univ Canterbury, Dept Chem & Proc Engn, Christchurch, New Zealand
来源
NANO SELECT | 2023年 / 4卷 / 04期
关键词
additive; adsorbed; carbon surface; electrochemical performance; lithium-ion batteries; pyrenes; ELECTRICAL-CONDUCTIVITY; INTERCALATION; HYDROCARBONS; DIFFUSION; IMPEDANCE; ANODE;
D O I
10.1002/nano.202200149
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Polycyclic aromatic hydrocarbons, such as pyrenes, are a well-known material class for non-covalent modification of carbon surfaces in many applications. In electrochemical energy storage, pyrenes are mostly used in large polymeric structures. This work addresses the use of carboxy- and amino-functionalized pyrenes for graphite electrodes for lithium-ion batteries (LIBs). Pyrenes are explored as adsorbed species on graphite prior to electrode fabrication and as additives to the electrode composition. Thereby, 1-pyrenecarboxylic acid, 1-pyrenebutyric acid, 1-aminopyrene, and 1-pyrenebutylamine were under investigation. As additives, pyrenes do not influence the cycling performance of the electrode at low current but deteriorate the performance at high current, regardless of the functional group. However, when the pyrenes are adsorbed to the graphite surface, the influence of the different functional groups becomes clearly visible, revealing that an additional butyl group has a positive impact on the cycling performance and lithium-ion transport of the electrodes. Electrodes with 1-pyrenebutyric acid even enhanced the performance compared to the pristine electrode.
引用
收藏
页码:278 / 287
页数:10
相关论文
共 50 条
  • [11] Decreasing Irreversible Capacity of Graphite Electrodes in Lithium-Ion Batteries by Direct Contact of Graphite with Metallic Lithium
    T. L. Kulova
    A. M. Skundin
    Russian Journal of Electrochemistry, 2002, 38 : 1319 - 1327
  • [12] Diffusion-Controlled Lithium Trapping in Graphite Composite Electrodes for Lithium-Ion Batteries
    Huang, Yu-Kai
    Pettersson, Jean
    Nyholm, Leif
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2022, 3 (08):
  • [13] Key factors for the cycling stability of graphite intercalation electrodes for lithium-ion batteries
    Joho, F
    Rykart, B
    Imhof, R
    Novák, P
    Spahr, ME
    Monnier, A
    JOURNAL OF POWER SOURCES, 1999, 81 : 243 - 247
  • [14] Modeling of porous graphite electrodes of hybride electrochemical capacitors and lithium-ion batteries
    Barsukov, V.
    Langouche, F.
    Khomenko, V.
    Makyeyeva, I.
    Chernysh, O.
    Gauthy, F.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (09) : 2723 - 2732
  • [15] Modeling of porous graphite electrodes of hybride electrochemical capacitors and lithium-ion batteries
    V. Barsukov
    F. Langouche
    V. Khomenko
    I. Makyeyeva
    O. Chernysh
    F. Gauthy
    Journal of Solid State Electrochemistry, 2015, 19 : 2723 - 2732
  • [16] A composite electrode model for lithium-ion batteries with silicon/graphite negative electrodes
    Ai, Weilong
    Kirkaldy, Niall
    Jiang, Yang
    Offer, Gregory
    Wang, Huizhi
    Wu, Billy
    JOURNAL OF POWER SOURCES, 2022, 527
  • [17] Water-Soluble Acrylate Binder for Graphite Electrodes in Lithium-Ion Batteries
    Pohjalainen, Elina
    Sorsa, Olli
    Juurikivi, Jouni
    Kallio, Tanja
    ENERGY TECHNOLOGY, 2016, 4 (04) : 470 - 472
  • [18] Reversible and Irreversible Deformation Mechanisms of Composite Graphite Electrodes in Lithium-Ion Batteries
    Jones, E. M. C.
    Capraz, O. O.
    White, S. R.
    Sottos, N. R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (09) : A1965 - A1974
  • [19] Differentiating the Degradation Phenomena in Silicon-Graphite Electrodes for Lithium-Ion Batteries
    Wetjen, Morten
    Pritzl, Daniel
    Jung, Roland
    Solchenbach, Sophie
    Ghadimi, Reza
    Gasteiger, Hubert A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (12) : A2840 - A2852
  • [20] Lithium Alanates as Negative Electrodes in Lithium-Ion Batteries
    Silvestri, Laura
    Forgia, Simona
    Farina, Luca
    Meggiolaro, Daniele
    Panero, Stefania
    La Barbera, Aurelio
    Brutti, Sergio
    Reale, Priscilla
    CHEMELECTROCHEM, 2015, 2 (06): : 877 - 886