High voltage electrolytes for lithium-ion batteries with micro-sized silicon anodes (vol 15, 1206, 2024)

被引:0
|
作者
Li, Ai-Min [1 ]
Wang, Zeyi [1 ]
Pollard, Travis P. [2 ]
Zhang, Weiran [1 ]
Tan, Sha [3 ]
Li, Tianyu [4 ]
Jayawardana, Chamithri [5 ]
Liou, Sz-Chian [6 ]
Rao, Jiancun [6 ]
Lucht, Brett L. [5 ]
Hu, Enyuan [3 ]
Yang, Xiao-Qing [3 ]
Borodin, Oleg [2 ]
Wang, Chunsheng [1 ]
机构
[1] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20740 USA
[2] DEVCOM Army Res Lab, Battery Sci Branch, Adelphi, MD 20783 USA
[3] Brookhaven Natl Lab, Chem Div, Upton, NY 11973 USA
[4] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20740 USA
[5] Univ Rhode Isl, Dept Chem, Kingston, RI 02881 USA
[6] Univ Maryland, Maryland Nanoctr, College Pk, MD 20740 USA
关键词
HERITABILITY; RELATIVES; SYSTEMS; MODEL;
D O I
10.1038/s41467-024-47037-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Assortative mating - the non-random mating of individuals with similar traits - is known to increase trait-specific genetic variance and genetic similarity between relatives. However, empirical evidence is limited for many traits, and the implications hinge on whether assortative mating has started recently or many generations ago. Here we show theoretically and empirically that genetic similarity between relatives can provide evidence on the presence and history of assortative mating. First, we employed path analysis to understand how assortative mating affects genetic similarity between family members across generations, finding that similarity between distant relatives is more affected than close relatives. Next, we correlated polygenic indices of 47,135 co-parents from the Norwegian Mother, Father, and Child Cohort Study (MoBa) and found genetic evidence of assortative mating in nine out of sixteen examined traits. The same traits showed elevated similarity between relatives, especially distant relatives. Six of the nine traits, including educational attainment, showed greater genetic variance among offspring, which is inconsistent with stable assortative mating over many generations. These results suggest an ongoing increase in familial similarity for these traits. The implications of this research extend to genetic methodology and the understanding of social and economic disparities. Non-random mating can complicate genetic studies, but implications hinge on its history in prior generations. Here, the authors use genetic similarity between relatives to investigate which traits show evidence of recent changes in mating behavior.
引用
收藏
页数:1
相关论文
共 50 条
  • [31] Recent Progress in Research on High-Voltage Electrolytes for Lithium-Ion Batteries
    Tan, Shi
    Ji, Ya J.
    Zhang, Zhong R.
    Yang, Yong
    CHEMPHYSCHEM, 2014, 15 (10) : 1956 - 1969
  • [32] Recent Advances in Electrolytes for High-Voltage Cathodes of Lithium-Ion Batteries
    Wen-hui Hou
    Yang Lu
    Yu Ou
    Pan Zhou
    Shuaishuai Yan
    Xi He
    Xuewen Geng
    Kai Liu
    Transactions of Tianjin University, 2023, 29 : 120 - 135
  • [33] Recent Advances in Electrolytes for High-Voltage Cathodes of Lithium-Ion Batteries
    Wenhui Hou
    Yang Lu
    Yu Ou
    Pan Zhou
    Shuaishuai Yan
    Xi He
    Xuewen Geng
    Kai Liu
    Transactions of Tianjin University, 2023, 29 (02) : 120 - 135
  • [34] A Comparative Study of Nano and Micro-Sized Silicon in Lithium-Ion Cells with a Nickel-Rich Cathode
    Zhang, Sheng S.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (09)
  • [35] Glyoxylic acetals as electrolytes for Si/Graphite anodes in lithium-ion batteries
    Gehrlein, Lydia
    Leibing, Christian
    Pfeifer, Kristina
    Jeschull, Fabian
    Balducci, Andrea
    Maibach, Julia
    ELECTROCHIMICA ACTA, 2022, 424
  • [36] Electrochemical Characteristics of Nanostructured Silicon Anodes for Lithium-Ion Batteries
    Astrova, E. V.
    Li, G. V.
    Rumyantsev, A. M.
    Zhdanov, V. V.
    SEMICONDUCTORS, 2016, 50 (02) : 276 - 283
  • [37] Parasitic Reactions in Nanosized Silicon Anodes for Lithium-Ion Batteries
    Gao, Han
    Xiao, Lisong
    Plueme, Ingo
    Xu, Gui-Liang
    Ren, Yang
    Zuo, Xiaobing
    Liu, Yuzi
    Schulz, Christof
    Wiggers, Hartmut
    Amine, Khalil
    Chen, Zonghai
    NANO LETTERS, 2017, 17 (03) : 1512 - 1519
  • [38] Amorphous silicon thin film anodes for lithium-ion batteries
    Maranchi, JP
    Kumta, PN
    Hepp, AF
    DEVELOPMENTS IN SOLID OXIDE FUEL CELLS AND LITHIUM ION BATTERIES, 2005, 161 : 121 - 129
  • [39] Composites of Piezoelectric Materials and Silicon as Anodes for Lithium-Ion Batteries
    Wang, Zhiguo
    Li, Zhijie
    Fu, Yong Qing
    CHEMELECTROCHEM, 2017, 4 (06): : 1523 - 1527
  • [40] Anodes for Lithium-Ion Batteries Obtained by Sintering Silicon Nanopowder
    E. V. Astrova
    V. B. Voronkov
    A. M. Rumyantsev
    A. V. Nashchekin
    A. V. Parfen’eva
    D. A. Lozhkina
    Russian Journal of Electrochemistry, 2019, 55 : 184 - 193