Pre-trained Language Models in Biomedical Domain: A Systematic Survey

被引:32
|
作者
Wang, Benyou [1 ]
Xie, Qianqian [2 ]
Pei, Jiahuan [3 ]
Chen, Zhihong [1 ]
Tiwari, Prayag [4 ]
Li, Zhao [5 ]
Fu, Jie [6 ]
机构
[1] Chinese Univ Hong Kong, Shenzhen, Peoples R China
[2] Univ Manchester, Dept Comp Sci, Manchester, Lancs, England
[3] Univ Amsterdam, Amsterdam, Netherlands
[4] Halmstad Univ, Sch Informat Technol, Halmstad, Sweden
[5] Univ Texas Hlth Sci Ctr Houston, Houston, TX 77030 USA
[6] Univ Montreal, Montreal, PQ, Canada
关键词
Biomedical domain; pre-trained language models; natural language processing; TRANSFORMERS; RESOURCE; CORPUS;
D O I
10.1145/3611651
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Pre-trained language models (PLMs) have been the de facto paradigm for most natural language processing tasks. This also benefits the biomedical domain: researchers from informatics, medicine, and computer science communities propose various PLMs trained on biomedical datasets, e.g., biomedical text, electronic health records, protein, and DNA sequences for various biomedical tasks. However, the cross-discipline characteristics of biomedical PLMs hinder their spreading among communities; some existing works are isolated from each other without comprehensive comparison and discussions. It is nontrivial to make a survey that not only systematically reviews recent advances in biomedical PLMs and their applications but also standardizes terminology and benchmarks. This article summarizes the recent progress of pre-trained language models in the biomedical domain and their applications in downstream biomedical tasks. Particularly, we discuss the motivations of PLMs in the biomedical domain and introduce the key concepts of pre-trained language models. We then propose a taxonomy of existing biomedical PLMs that categorizes them from various perspectives systematically. Plus, their applications in biomedical downstream tasks are exhaustively discussed, respectively. Last, we illustrate various limitations and future trends, which aims to provide inspiration for the future research.
引用
收藏
页数:52
相关论文
共 50 条
  • [21] PhoBERT: Pre-trained language models for Vietnamese
    Dat Quoc Nguyen
    Anh Tuan Nguyen
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2020, 2020, : 1037 - 1042
  • [22] Deciphering Stereotypes in Pre-Trained Language Models
    Ma, Weicheng
    Scheible, Henry
    Wang, Brian
    Veeramachaneni, Goutham
    Chowdhary, Pratim
    Sung, Alan
    Koulogeorge, Andrew
    Wang, Lili
    Yang, Diyi
    Vosoughi, Soroush
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2023), 2023, : 11328 - 11345
  • [23] Knowledge Rumination for Pre-trained Language Models
    Yao, Yunzhi
    Wang, Peng
    Mao, Shengyu
    Tan, Chuanqi
    Huang, Fei
    Chen, Huajun
    Zhang, Ningyu
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, EMNLP 2023, 2023, : 3387 - 3404
  • [24] HinPLMs: Pre-trained Language Models for Hindi
    Huang, Xixuan
    Lin, Nankai
    Li, Kexin
    Wang, Lianxi
    Gan, Suifu
    2021 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP), 2021, : 241 - 246
  • [25] Evaluating Commonsense in Pre-Trained Language Models
    Zhou, Xuhui
    Zhang, Yue
    Cui, Leyang
    Huang, Dandan
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 9733 - 9740
  • [26] Knowledge Inheritance for Pre-trained Language Models
    Qin, Yujia
    Lin, Yankai
    Yi, Jing
    Zhang, Jiajie
    Han, Xu
    Zhang, Zhengyan
    Su, Yusheng
    Liu, Zhiyuan
    Li, Peng
    Sun, Maosong
    Zhou, Jie
    NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 3921 - 3937
  • [27] Code Execution with Pre-trained Language Models
    Liu, Chenxiao
    Lu, Shuai
    Chen, Weizhu
    Jiang, Daxin
    Svyatkovskiy, Alexey
    Fu, Shengyu
    Sundaresan, Neel
    Duan, Nan
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, 2023, : 4984 - 4999
  • [28] Probing for Hyperbole in Pre-Trained Language Models
    Schneidermann, Nina Skovgaard
    Hershcovich, Daniel
    Pedersen, Bolette Sandford
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-SRW 2023, VOL 4, 2023, : 200 - 211
  • [29] Pre-trained Language Models for the Legal Domain: A Case Study on Indian Law
    Paul, Shounak
    Mandal, Arpan
    Goyal, Pawan
    Ghosh, Saptarshi
    PROCEEDINGS OF THE 19TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND LAW, ICAIL 2023, 2023, : 187 - 196
  • [30] Zero-shot domain paraphrase with unaligned pre-trained language models
    Zheng Chen
    Hu Yuan
    Jiankun Ren
    Complex & Intelligent Systems, 2023, 9 : 1097 - 1110