Deep learning and single-cell phenotyping for rapid antimicrobial susceptibility detection in Escherichia coli

被引:16
|
作者
Zagajewski, Alexander [1 ,2 ]
Turner, Piers [1 ,2 ]
Feehily, Conor [3 ]
El Sayyed, Hafez [1 ,2 ]
Andersson, Monique [3 ,4 ]
Barrett, Lucinda [4 ]
Oakley, Sarah [4 ]
Stracy, Mathew [5 ]
Crook, Derrick [3 ,4 ]
Nellaker, Christoffer [6 ]
Stoesser, Nicole [3 ,4 ]
Kapanidis, Achillefs N. [1 ,2 ]
机构
[1] Univ Oxford, Dept Phys, Parks Rd, Oxford OX1 3PJ, England
[2] Univ Oxford, Kavli Inst Nanosci Discovery, South Parks Rd, Oxford OX1 3QU, England
[3] Univ Oxford, John Radcliffe Hosp, Nuffield Dept Med, Oxford OX3 9DU, England
[4] Oxford Univ Hosp NHS Fdn Trust, Dept Microbiol & Infect Dis, Oxford OX3 9DU, England
[5] Univ Oxford, Sir William Dunn Sch Pathol, South Parks Rd, Oxford OX1 3RE, England
[6] Univ Oxford, Big Data Inst, Nuffield Dept Womens & Reprod Hlth, Oxford OX3 7LF, England
基金
英国生物技术与生命科学研究理事会; 英国惠康基金; 英国工程与自然科学研究理事会;
关键词
BACTERIAL; IDENTIFICATION;
D O I
10.1038/s42003-023-05524-4
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The rise of antimicrobial resistance (AMR) is one of the greatest public health challenges, already causing up to 1.2 million deaths annually and rising. Current culture-based turnaround times for bacterial identification in clinical samples and antimicrobial susceptibility testing (AST) are typically 18-24 h. We present a novel proof-of-concept methodological advance in susceptibility testing based on the deep-learning of single-cell specific morphological phenotypes directly associated with antimicrobial susceptibility in Escherichia coli. Our models can reliably (80% single-cell accuracy) classify untreated and treated susceptible cells for a lab-reference fully susceptible E. coli strain, across four antibiotics (ciprofloxacin, gentamicin, rifampicin and co-amoxiclav). For ciprofloxacin, we demonstrate our models reveal significant (p < 0.001) differences between bacterial cell populations affected and unaffected by antibiotic treatment, and show that given treatment with a fixed concentration of 10 mg/L over 30 min these phenotypic effects correlate with clinical susceptibility defined by established clinical breakpoints. Deploying our approach on cell populations from six E. coli strains obtained from human bloodstream infections with varying degrees of ciprofloxacin resistance and treated with a range of ciprofloxacin concentrations, we show single-cell phenotyping has the potential to provide equivalent information to growth-based AST assays, but in as little as 30 min.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Energy Taxis in Escherichia Coli on the Single-Cell Level
    Perlova, Tatyana
    Gruebele, Martin
    Chemla, Yann R.
    BIOPHYSICAL JOURNAL, 2017, 112 (03) : 277A - 277A
  • [12] Detection of enhancer activity at the single-cell level by deep learning method
    Murakami, Ken
    Okada, Mariko
    CANCER SCIENCE, 2024, 115 : 1448 - 1448
  • [13] Detection of ESBLs and Antimicrobial Susceptibility of Escherichia coli isolated in Henan, China
    Zhang, Chun-Hui
    Liu, Yong-Lu
    Wang, Jian-Hua
    JOURNAL OF ANIMAL AND VETERINARY ADVANCES, 2010, 9 (15): : 2030 - 2034
  • [14] Phenotyping antibiotic resistance with single-cell resolution for the detection of heteroresistance
    Lyu, Fengjiao
    Pan, Ming
    Patil, Sunita
    Wang, Jing-Hung
    Matin, A. C.
    Andrews, Jason R.
    Tang, Sindy K. Y.
    SENSORS AND ACTUATORS B-CHEMICAL, 2018, 270 : 396 - 404
  • [15] Rapid single-cell physical phenotyping of mechanically dissociated tissue biopsies
    Despina Soteriou
    Markéta Kubánková
    Christine Schweitzer
    Rocío López-Posadas
    Rashmita Pradhan
    Oana-Maria Thoma
    Andrea-Hermina Györfi
    Alexandru-Emil Matei
    Maximilian Waldner
    Jörg H. W. Distler
    Stefan Scheuermann
    Jens Langejürgen
    Markus Eckstein
    Regine Schneider-Stock
    Raja Atreya
    Markus F. Neurath
    Arndt Hartmann
    Jochen Guck
    Nature Biomedical Engineering, 2023, 7 : 1392 - 1403
  • [16] Rapid single-cell physical phenotyping of mechanically dissociated tissue biopsies
    Soteriou, Despina
    Kubankova, Marketa
    Schweitzer, Christine
    Lopez-Posadas, Rocio
    Pradhan, Rashmita
    Thoma, Oana-Maria
    Gyoerfi, Andrea-Hermina
    Matei, Alexandru-Emil
    Waldner, Maximilian
    Distler, Joerg H. W.
    Scheuermann, Stefan
    Langejuergen, Jens
    Eckstein, Markus
    Schneider-Stock, Regine
    Atreya, Raja
    Neurath, Markus F.
    Hartmann, Arndt
    Guck, Jochen
    NATURE BIOMEDICAL ENGINEERING, 2023, 7 (11) : 1392 - +
  • [17] Fisheye transformation enhances deep-learning-based single-cell phenotyping by including cellular microenvironment
    Toth, Timea
    Bauer, David
    Sukosd, Farkas
    Horvath, Peter
    CELL REPORTS METHODS, 2022, 2 (12):
  • [18] Microfluidic detection of movements of Escherichia coli for rapid antibiotic susceptibility testing
    Kara, Vural
    Duan, Chuanhua
    Gupta, Kalpana
    Kurosawa, Shinichiro
    Stearns-Kurosawa, Deborah J.
    Ekinci, Kamil L.
    LAB ON A CHIP, 2018, 18 (05) : 743 - 753
  • [19] Population and Single-Cell Analysis of Antibiotic Persistence in Escherichia coli
    Oms, Thierry
    Schlechtweg, Tatjana
    Cayron, Julien
    Van Melderen, Laurence
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2023, (193):
  • [20] SINGLE-CELL ISOLATIONS OF DIPLOID HETEROZYGOUS ESCHERICHIA-COLI
    ZELLE, MR
    LEDERBERG, J
    JOURNAL OF BACTERIOLOGY, 1951, 61 (03) : 351 - 355