Applying t-Distributed Stochastic Neighbor Embedding for Improving Fingerprinting-Based Localization System

被引:3
|
作者
Tarekegn, Getaneh Berie [1 ,2 ]
Tai, Li-Chia [1 ,2 ]
Lin, Hsin-Piao [3 ]
Tesfaw, Belayneh Abebe [4 ]
Juang, Rong-Terng [5 ]
Hsu, Huan-Chia [2 ]
Huang, Kai-Lun [6 ]
Singh, Kanishk [2 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Dept Elect & Comp Engn, Hsinchu, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Inst Elect & Control Engn, Hsinchu 30010, Taiwan
[3] Natl Taipei Univ Technol, Dept Elect Engn, Taipei 10608, Taiwan
[4] Natl Taipei Univ Technol, Dept Elect Engn & Comp Sci, Taipei 10608, Taiwan
[5] Feng Chia Univ, Dept Elect Engn, Taichung 40724, Taiwan
[6] Ind Technol Res Inst, Informat & Commun Res Labs, Hsinchu 310401, Taiwan
关键词
Feature extraction technique; fingerprinting method; location estimation; long short-term memory (LSTM); signal fingerprints; support vector machine (SVM);
D O I
10.1109/LSENS.2023.3301838
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Large-scale location estimation is crucial for many artificial intelligence Internet of Things (IoT) applications in the era of smart cities. This letter proposes a deep learning-based outdoor positioning scheme for large-scale wireless settings using fingerprinting techniques. We first developed a feature extraction technique using t-distributed stochastic neighbor embedding (t-SNE) to extract dominant and distinguishable features while eliminating noises from the radio fingerprints. Afterward, we developed a deep learning-based coarse-fine localization framework to improve positioning performance significantly. Based on our numerical analysis, the proposed scheme reduces computation time by 64.41%, and the average positioning error is 38 cm. Therefore, the proposed approach significantly improved positioning accuracy and reduced computation time.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Visualizing temporal brain-state changes for fMRI using t-distributed stochastic neighbor embedding
    Parmar, Harshit
    Nutter, Brian
    Long, Rodney
    Antani, Sameer
    Mitra, Sunanda
    JOURNAL OF MEDICAL IMAGING, 2021, 8 (04)
  • [42] Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets
    Belkina, Anna C.
    Ciccolella, Christopher O.
    Anno, Rina
    Halpert, Richard
    Spidlen, Josef
    Snyder-Cappione, Jennifer E.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [43] Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets
    Anna C. Belkina
    Christopher O. Ciccolella
    Rina Anno
    Richard Halpert
    Josef Spidlen
    Jennifer E. Snyder-Cappione
    Nature Communications, 10
  • [44] T-distributed Stochastic Neighbor Network for unsupervised representation learning
    Wang, Zheng
    Xie, Jiaxi
    Nie, Feiping
    Wang, Rong
    Jia, Yanyan
    Liu, Shichang
    NEURAL NETWORKS, 2024, 179
  • [45] Parametric t-Distributed Stochastic Exemplar-Centered Embedding
    Min, Martin Renqiang
    Guo, Hongyu
    Shen, Dinghan
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2018, PT I, 2019, 11051 : 477 - 493
  • [46] Use of t-distributed stochastic neighbour embedding in vibrational spectroscopy
    Stevens, Francois
    Carrasco, Beatriz
    Baeten, Vincent
    Fernandez Pierna, Juan A.
    JOURNAL OF CHEMOMETRICS, 2024, 38 (04)
  • [47] Vibration-based detection and classification of structural changes using principal component analysis and t-distributed stochastic neighbor embedding
    Agis, David
    Tibaduiza, Diego A.
    Pozo, Francesc
    STRUCTURAL CONTROL & HEALTH MONITORING, 2020, 27 (06):
  • [48] Classification of Weld Seam Width Based on Detrended Fluctuation Analysis, t-Distributed Stochastic Neighbor Embedding, and Support Vector Machine
    Yong Huang
    Yang, Dongqing
    Lei Wang
    Gu Jieren
    Zhang Xiaoyong
    Wang, Kehong
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2022, 31 (05) : 3975 - 3984
  • [49] Classification of Weld Seam Width Based on Detrended Fluctuation Analysis, t-Distributed Stochastic Neighbor Embedding, and Support Vector Machine
    Yong Huang
    Dongqing Yang
    Lei Wang
    Gu Jieren
    Zhang Xiaoyong
    Kehong Wang
    Journal of Materials Engineering and Performance, 2022, 31 : 3975 - 3984
  • [50] Breast cancer classification using snapshot ensemble deep learning model and t-distributed stochastic neighbor embedding
    Nonita Sharma
    K. P. Sharma
    Monika Mangla
    Rajneesh Rani
    Multimedia Tools and Applications, 2023, 82 : 4011 - 4029