Fusion of CNN and Feature Extraction Methods for Multiple Sclerosis Classification

被引:0
|
作者
Souid, Bouthaina [1 ]
Yahia, Samah [2 ]
Bouchrika, Tahani [1 ]
Jemai, Olfa [1 ]
机构
[1] Natl Engn Sch Gabes, Res Team Intelligent Machines, Zrig Eddakhlania, Tunisia
[2] Res Lab Modeling Anal & Control Syst, Tunis, Tunisia
关键词
Multiple sclerosis; feature extraction; 3D-LBP; 3D-DDP; LBP-TOP; DDP-TOP; Convolutional Neural Network;
D O I
10.1117/12.2679706
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multiple sclerosis (MS) is a chronic autoimmune inflammatory disease that damages the central nervous system by causing small lesions in the brain. In this study, we present the fusion of four features extraction methods such as the 3D Local Binary Pattern (3D-LBP), 3D Decimal Descriptor Patterns (3D-DDP), Local Binary Pattern from Three Orthogonal Planes (LBP-TOP) and Decimal Descriptor Patterns from Three Orthogonal Planes (DDP-TOP) with Convolutional Neural Network (CNN) for MS classification using three 3D MRI sequences datasets T1, T2 and PD from 3D BrainWeb dataset. We implement twelve CNN models and apply each method with each of the CNN models on T1, T2 then PD MRI sequences. The experimental results demonstrate that 3D-DDP and DDP-TOP methods are the most robust and, for the contrast change effect of MRI sequences on the classification results, T2 yields the best performance.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Hybrid methods for feature extraction for breast masses classification
    Berbar, Mohamed A.
    EGYPTIAN INFORMATICS JOURNAL, 2018, 19 (01) : 63 - 73
  • [32] Comparison of Feature Extraction Methods for EEG BCI Classification
    Uktveris, Tomas
    Jusas, Vacius
    INFORMATION AND SOFTWARE TECHNOLOGIES, ICIST 2015, 2015, 538 : 81 - 92
  • [33] Texture feature extraction methods for microcalcification classification in mammograms
    Soltanian-Zadeh, H
    Pourabdollah-Nezhad, S
    Rafiee-Rad, F
    MEDICAL IMAGING 2000: IMAGE PROCESSING, PTS 1 AND 2, 2000, 3979 : 982 - 989
  • [34] Novel Methods for Microglia Segmentation, Feature Extraction, and Classification
    Ding, Yuchun
    Pardon, Marie Christine
    Agostini, Alessandra
    Faas, Henryk
    Duan, Jinming
    Ward, Wil O. C.
    Easton, Felicity
    Auer, Dorothee
    Bai, Li
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2017, 14 (06) : 1366 - 1377
  • [35] Feature Extraction Based on Tensor Modelling for Classification Methods
    Yan, Ronghua
    Peng, Jinye
    Ma, Dongmei
    Wen, Desheng
    Dong, Yingdi
    2017 INTERNATIONAL CONFERENCE ON THE FRONTIERS AND ADVANCES IN DATA SCIENCE (FADS), 2017, : 124 - 129
  • [36] Exploring feature extraction methods for infant mood classification
    Vignolo, Leandro D.
    Albornoz, Enrique M.
    Martinez, Cesar E.
    AI COMMUNICATIONS, 2019, 32 (03) : 191 - 206
  • [37] DISCRIMINATIVE FEATURE EXTRACTION AND FUSION FOR CLASSIFICATION OF HYPERSPECTRAL AND LIDAR DATA
    Song, Weiwei
    Gao, Zhi
    Zhang, Yongjun
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 2271 - 2274
  • [38] Feature-Based Fusion Using CNN for Lung and Heart Sound Classification
    Tariq, Zeenat
    Shah, Sayed Khushal
    Lee, Yugyung
    SENSORS, 2022, 22 (04)
  • [39] Driving Maneuver Classification: A Comparison of Feature Extraction Methods
    Xie, Jie
    Hilal, Allaa R.
    Kulic, Dana
    IEEE SENSORS JOURNAL, 2018, 18 (12) : 4777 - 4784
  • [40] Automated Tomato Defect Detection Using CNN Feature Fusion for Enhanced Classification
    Alzahrani, Musaad
    PROCESSES, 2025, 13 (01)