Explainable Artificial Intelligence for Interpretable Data Minimization

被引:0
|
作者
Becker, Maximilian [1 ]
Toprak, Emrah [1 ]
Beyerer, Juergen [2 ]
机构
[1] Karlsruhe Inst Technol, Vis & Fus Lab, Karlsruhe, Germany
[2] Fraunhofer IOSB, Karlsruhe, Germany
关键词
XAI; Data Minimization; Counterfactual Explanations;
D O I
10.1109/ICDMW60847.2023.00119
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Black box models such as deep neural networks are increasingly being deployed in high-stakes fields, including justice, health, and finance. Furthermore, they require a huge amount of data, and such data often contains personal information. However, the principle of data minimization in the European Union's General Data Protection Regulation requires collecting only the data that is essential to fulfilling a particular purpose. Implementing data minimization for black box models can be difficult because it involves identifying the minimum set of variables that are relevant to the model's prediction, which may not be apparent without access to the model's inner workings. In addition, users are often reluctant to share all their personal information. We propose an interactive system to reduce the amount of personal data by determining the minimal set of features required for a correct prediction using explainable artificial intelligence techniques. Our proposed method can inform the user whether the provided variables contain enough information for the model to make accurate predictions or if additional variables are necessary. This humancentered approach can enable providers to minimize the amount of personal data collected for analysis and may increase the user's trust and acceptance of the system.
引用
收藏
页码:885 / 893
页数:9
相关论文
共 50 条
  • [31] Explainable Artificial Intelligence for Deep Synthetic Data Generation Models
    Valina, Luis
    Teixeira, Brigida
    Reis, Amalie
    Vale, Zita
    Pinto, Tiago
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 555 - 556
  • [32] Explainable Artificial Intelligence for Kids
    Alonso, Jose M.
    PROCEEDINGS OF THE 11TH CONFERENCE OF THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY (EUSFLAT 2019), 2019, 1 : 134 - 141
  • [33] On the Need of an Explainable Artificial Intelligence
    Zanni-Merk, Cecilia
    INFORMATION SYSTEMS ARCHITECTURE AND TECHNOLOGY, ISAT 2019, PT I, 2020, 1050 : 3 - 3
  • [34] Explainable Artificial Intelligence in education
    Khosravi H.
    Shum S.B.
    Chen G.
    Conati C.
    Tsai Y.-S.
    Kay J.
    Knight S.
    Martinez-Maldonado R.
    Sadiq S.
    Gašević D.
    Computers and Education: Artificial Intelligence, 2022, 3
  • [35] Explainable and Trustworthy Artificial Intelligence
    Alonso-Moral, Jose Maria
    Mencar, Corrado
    Ishibuchi, Hisao
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2022, 17 (01) : 14 - 15
  • [36] Explainable and responsible artificial intelligence
    Christian Meske
    Babak Abedin
    Mathias Klier
    Fethi Rabhi
    Electronic Markets, 2022, 32 : 2103 - 2106
  • [37] Explainable artificial intelligence in pathology
    Klauschen, Frederick
    Dippel, Jonas
    Keyl, Philipp
    Jurmeister, Philipp
    Bockmayr, Michael
    Mock, Andreas
    Buchstab, Oliver
    Alber, Maximilian
    Ruff, Lukas
    Montavon, Gregoire
    Mueller, Klaus-Robert
    PATHOLOGIE, 2024, 45 (02): : 133 - 139
  • [38] Review of Explainable Artificial Intelligence
    Zhao, Yanyu
    Zhao, Xiaoyong
    Wang, Lei
    Wang, Ningning
    Computer Engineering and Applications, 2023, 59 (14) : 1 - 14
  • [39] Explainable artificial intelligence in ophthalmology
    Tan, Ting Fang
    Dai, Peilun
    Zhang, Xiaoman
    Jin, Liyuan
    Poh, Stanley
    Hong, Dylan
    Lim, Joshua
    Lim, Gilbert
    Teo, Zhen Ling
    Liu, Nan
    Ting, Daniel Shu Wei
    CURRENT OPINION IN OPHTHALMOLOGY, 2023, 34 (05) : 422 - 430
  • [40] A Review of Explainable Artificial Intelligence
    Lin, Kuo-Yi
    Liu, Yuguang
    Li, Li
    Dou, Runliang
    ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS: ARTIFICIAL INTELLIGENCE FOR SUSTAINABLE AND RESILIENT PRODUCTION SYSTEMS, APMS 2021, PT IV, 2021, 633 : 574 - 584