Type I critical dynamical scalarization and descalarization in Einstein-Maxwell-scalar theory

被引:4
|
作者
Jiang, Jia-Yan [1 ,2 ]
Chen, Qian [3 ]
Liu, Yunqi [4 ]
Tian, Yu [3 ,5 ]
Xiong, Wei [6 ]
Zhang, Cheng-Yong [1 ,2 ]
Wang, Bin [4 ,7 ]
机构
[1] Jinan Univ, Dept Phys, Guangzhou 510632, Peoples R China
[2] Jinan Univ, Siyuan Lab, Guangzhou 510632, Peoples R China
[3] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[4] Yangzhou Univ, Coll Phys Sci & Technol, Ctr Gravitat & Cosmol, Yangzhou 225009, Peoples R China
[5] Chinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China
[6] South China Univ Technol, Sch Phys & Optoelect, Guangzhou 510641, Peoples R China
[7] Shanghai Jiao Tong Univ, Sch Aeronaut & Astronaut, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
black hole (de)scalarization; dynamical critical behavior; attractor; QUASI-NORMAL MODES; CHARGED BLACK-HOLES; GRAVITATIONAL COLLAPSE; CRITICAL-BEHAVIOR; PHASE-TRANSITIONS; PERTURBATIONS; INSTABILITY; SIGNATURES; SPACETIME; COLD;
D O I
10.1007/s11433-023-2231-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigated the critical dynamical scalarization and descalarization of black holes within the framework of the Einstein-Maxwell-scalar theory featuring higher-order coupling functions. Both the critical scalarization and descalarization displayed first-order phase transitions. When examining the nonlinear dynamics near the threshold, we always observed critical solutions that are linearly unstable static scalarized black holes. The critical dynamical scalarization and descalarization share certain similarities with the type I critical gravitational collapse. However, their initial configurations, critical solutions, and final outcomes differ significantly. To provide further insights into the dynamical results, we conducted a comparative analysis involving static solutions and perturbative analysis.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Extraction of energy from a black hole in Einstein-Maxwell-scalar theory
    Cheng-Yong Zhang
    Zehong Zhang
    Ruifeng Zheng
    Science China(Physics,Mechanics & Astronomy), 2025, (05) : 64 - 73
  • [32] Electromagnetic dual Einstein-Maxwell-scalar models
    Herdeiro, Carlos A. R.
    Oliveira, Joao M. S.
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (07)
  • [33] Electromagnetic dual Einstein-Maxwell-scalar models
    Carlos A. R. Herdeiro
    João M. S. Oliveira
    Journal of High Energy Physics, 2020
  • [34] STABILITY ANALYSIS OF EINSTEIN-MAXWELL-SCALAR SYSTEM
    KOH, IG
    MYUNG, YS
    NISHINO, H
    PHYSICAL REVIEW D, 1985, 32 (12): : 3195 - 3200
  • [35] Godel-type solutions in Einstein-Maxwell-scalar field theories
    Ishihara, Hideki
    Matsuno, Satsuki
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2022, 2022 (01):
  • [36] Quasiperiodic oscillation around charged black holes in Einstein-Maxwell-scalar theory
    Rayimbaev, Javlon
    Abdujabbarov, Ahmadjon
    Abdulkhamidov, Farukh
    Khamidov, Vokhid
    Djumanov, Sherzod
    Toshov, Javohir
    Inoyatov, Shukurillo
    EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (12):
  • [37] New singular and nonsingular colliding wave solutions in Einstein-Maxwell-scalar theory
    Gurtug, O
    Halilsoy, M
    Sakalli, I
    GENERAL RELATIVITY AND GRAVITATION, 2003, 35 (12) : 2159 - 2170
  • [38] Test particle motion around a black hole in Einstein-Maxwell-scalar theory
    Turimov, Bobur
    Rayimbaev, Javlon
    Abdujabbarov, Ahmadjon
    Ahmedov, Bobomurat
    Stuchlik, Zdenek
    PHYSICAL REVIEW D, 2020, 102 (06)
  • [39] Spontaneous scalarization of dyonic black hole in Einstein–Maxwell-scalar theory
    Jie Jiang
    Jia Tan
    The European Physical Journal C, 83
  • [40] Stability of generalized Einstein-Maxwell-scalar black holes
    Gannouji, Radouane
    Rodriguez Baez, Yolbeiker
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (02)