A new extension of a "divergent" Ramanujan-type supercongruence

被引:0
|
作者
Cao, Jian [1 ]
Guo, Victor J. W. [2 ]
Yu, Xiao [1 ]
机构
[1] Hangzhou Normal Univ, Sch Math, Hangzhou, Peoples R China
[2] Huaiyin Normal Univ, Sch Math & Stat, Huaian 223300, Peoples R China
关键词
Supercongruence; basic hypergeometric series; cyclotomic polynomials; creative microscoping;
D O I
10.1080/10236198.2023.2270536
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a new extension of a 'divergent' Ramanujan-type supercongruence of Guillera and Zudilin by establishing a q-analogue of this result. Our proof makes use of the 'creative microscoping' method, which was introduced by the second author and Zudilin in 2019. We also present a similar extension of the (L.2) supercongruence of Van Hamme in the modulus $ p<^>2 $ p2 case.
引用
收藏
页码:122 / 132
页数:11
相关论文
共 50 条
  • [21] Some new Ramanujan-type modular equations of degree 15
    Zhang Chuan-Ding
    Yang Li
    The Ramanujan Journal, 2024, 64 : 143 - 151
  • [22] Error estimates of Ramanujan-type series
    Mortici, Cristinel
    RAMANUJAN JOURNAL, 2012, 27 (02): : 169 - 179
  • [23] ON RAMANUJAN-TYPE CONGRUENCES FOR MULTIPLICATIVE FUNCTIONS
    Craig, William I.V.
    Merca, Mircea
    arXiv, 2021,
  • [24] THE HARDY SPACE OF RAMANUJAN-TYPE ENTIRE FUNCTIONS
    Deniz, Erhan
    Caglar, Murat
    HONAM MATHEMATICAL JOURNAL, 2023, 45 (01): : 71 - 81
  • [25] RAMANUJAN-TYPE CONGRUENCES FOR SEVERAL PARTITION FUNCTIONS
    Zhang, Wenlong
    Wang, Chun
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (03) : 641 - 652
  • [26] Ramanujan-type congruences for overpartitions modulo 16
    Chen, William Y. C.
    Hou, Qing-Hu
    Sun, Lisa H.
    Zhang, Li
    RAMANUJAN JOURNAL, 2016, 40 (02): : 311 - 322
  • [27] Ramanujan-type congruences for overpartitions modulo 5
    Chen, William Y. C.
    Sun, Lisa H.
    Wang, Rong-Hua
    Zhang, Li
    JOURNAL OF NUMBER THEORY, 2015, 148 : 62 - 72
  • [28] Some Ramanujan-type circular summation formulas
    Ji-Ke Ge
    Qiu-Ming Luo
    Advances in Difference Equations, 2020
  • [29] Relations among Ramanujan-type congruences I
    Raum, Martin
    ADVANCES IN MATHEMATICS, 2022, 409
  • [30] Explicit evaluation of a family of Ramanujan-type integrals
    Pan, Ende
    Wang, Xiyu
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2025,