Semi-supervised possibilistic c-means clustering algorithm based on feature weights for imbalanced data

被引:10
|
作者
Yu, Haiyan [1 ]
Xu, Xiaoyu [1 ]
Li, Honglei [1 ]
Wu, Yuting [1 ]
Lei, Bo [1 ]
机构
[1] Xian Univ Posts & Telecommun, Sch Telecommun & Informat Engn, Xian 710121, Peoples R China
基金
中国国家自然科学基金;
关键词
Clustering; Possibilistic c -means clustering (PCM); Semi; -supervised; Feature weight; Imbalanced data; Image segmentation; MAHALANOBIS DISTANCE; FUZZY; ENTROPY;
D O I
10.1016/j.knosys.2024.111388
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The possibilistic c-means clustering (PCM) algorithm improves the robustness of fuzzy c-means clustering (FCM) to noise and outliers by releasing the probabilistic constraint of memberships. The semi-supervised possibilistic cmeans clustering (SSPCM) algorithm improves the clustering effect on datasets with imbalanced sizes by introducing a small amount of label information. However, the traditional semi-supervised algorithm still faces the problem of low utilization of supervision information for datasets with large differences in sample sizes. Moreover, the Euclidean distance, which treats features equally, cannot handle feature-imbalanced data. Therefore, this paper proposes a semi-supervised possibilistic c-means clustering algorithm based on feature weights (FW-SSPCM) by introducing the ideas of supervised centers. First, the algorithm introduces the supervised center into the objective function of the SSPCM to improve the utilization rate of supervision information and thus guide the center iteration of small clusters. Second, the feature weighting strategy is introduced in the objective function to adaptively assign feature weights according to the importance of different features in different clusters, thus improving the adaptability of the algorithm to feature-imbalanced datasets. In addition, to improve the robustness of the antinoise effect and retain additional image details, a new image segmentation algorithm based on FW-SSPCM and local information (LFW-SSPCM) is proposed by introducing local spatial information obtained by bilateral filtering. Finally, through clustering experiments on synthetic data, UCI datasets and on color images characteristic of multiple features, including imbalanced sizes, imbalanced features and strong noise injection, the clustering performances of the proposed FW-SSPCM and LFW-SSPCM proposed in this paper are significantly better than those of several related clustering algorithms.
引用
收藏
页数:37
相关论文
共 50 条
  • [41] A Modified Possibilistic Fuzzy c-Means Clustering Algorithm
    Qu, Fuheng
    Hu, Yating
    Xue, Yaohong
    Yang, Yong
    2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 858 - 862
  • [42] An enhanced possibilistic C-Means clustering algorithm EPCM
    Xie, Zhenping
    Wang, Shitong
    Chung, F. L.
    SOFT COMPUTING, 2008, 12 (06) : 593 - 611
  • [43] A Possibilistic Multivariate Fuzzy c-Means Clustering Algorithm
    Himmelspach, Ludmila
    Conrad, Stefan
    SCALABLE UNCERTAINTY MANAGEMENT, SUM 2016, 2016, 9858 : 338 - 344
  • [44] Generalized Adaptive Possibilistic C-Means Clustering Algorithm
    Xenaki, Spyridoula
    Koutroumbas, Konstantinos
    Rontogiannis, Athanasios
    10TH HELLENIC CONFERENCE ON ARTIFICIAL INTELLIGENCE (SETN 2018), 2018,
  • [45] An enhanced possibilistic C-Means clustering algorithm EPCM
    Zhenping Xie
    Shitong Wang
    F. L. Chung
    Soft Computing, 2008, 12 : 593 - 611
  • [46] A Weight Possibilistic Fuzzy C-Means Clustering Algorithm
    Chen, Jiashun
    Zhang, Hao
    Pi, Dechang
    Kantardzic, Mehmed
    Yin, Qi
    Liu, Xin
    SCIENTIFIC PROGRAMMING, 2021, 2021
  • [47] Investigating Distance Metric Learning in Semi-supervised Fuzzy c-means Clustering
    Lai, Daphne Teck Ching
    Garibaldi, Jonathan M.
    Reps, Jenna
    2014 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2014, : 1817 - 1824
  • [48] Some Pairwise Constrained Semi-Supervised Fuzzy c-Means Clustering Algorithms
    Kanzawa, Yuchi
    Endo, Yasunori
    Miyamoto, Sadaaki
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2009, 5861 : 268 - +
  • [49] Semi-Supervised Clustering Algorithm Based on Deep Feature Mapping
    Xu, Xiong
    Zhou, Chun
    Wang, Chenggang
    Zhang, Xiaoyan
    Meng, Hua
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 37 (01): : 815 - 831
  • [50] Engine wear fault diagnosis based on improved semi-supervised fuzzy c-means clustering
    Xu C.
    Zhang P.
    Ren G.
    Fu J.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2011, 47 (17): : 55 - 60