Polyaniline@g-C3N4 derived N-rich porous carbon for selective degradation of phenolic pollutants via peroxymonosulfate activation: An electron transfer mechanism

被引:15
|
作者
Kou, Lidong [1 ,2 ]
Fan, Qingfeng [1 ]
Yang, Yuhong [3 ]
Duan, Xianying [2 ]
Jiang, Kai [1 ]
Wang, Jing [2 ,4 ]
机构
[1] Henan Normal Univ, Sch Environm, Key Lab Yellow River & Huai River Water Environm &, Henan Key Lab Environm Pollut Control, Xinxiang 453007, Henan, Peoples R China
[2] Henan Acad Sci, Inst Chem, Zhengzhou 450002, Henan, Peoples R China
[3] North China Univ Water Resources & Elect Power, Sch Water Conservancy, Zhengzhou 450046, Henan, Peoples R China
[4] 56 Hongzhuan Rd, Zhengzhou 450002, Peoples R China
基金
中国国家自然科学基金;
关键词
N -doped porous carbon; Polyaniline; Electron transfer pathway; Peroxymonosulfate; DOPED GRAPHENE; ORGANIC POLLUTANTS; OXIDATION; TRANSFORMATION; NANOSHEETS; CATALYST; NITRIDE; G-C3N4; WATER;
D O I
10.1016/j.chemosphere.2022.137022
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
N-doped carbons have attracted extensive attention as catalysts for peroxymonosulfate (PMS) activation towards environmental remediation. However, synthesis of N-rich carbocatalysts is challenging and PMS activation mechanism is still unclear. Herein, novel N-rich porous carbocatalysts (C-PxCN-T) were synthesized by carbonization of polyaniline nanorods coated g-C3N4. C-P50CN-900 (polyaniline content 50%) calcined at 900 degrees C had high surface area (358 m2/g), product yield (27.1%) and N content (12.27 at%). It showed superior performance in activating PMS to degrade and mineralize various phenolic pollutants in a wide pH range (2-11) and with the co-existence of water constituents. A positive correlation was observed between phenol oxidation rates and contents of C--O, C-C/C--C and graphitic N, which served as active sites to facilitate adsorption of pollutants and PMS on C-P50CN-900 and subsequent electron-transfer from pollutants to PMS. Overall, this study provides new insights into rational design of N-doped carbocatalysts and elucidation of electron transfer pathway in PMS activation.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Strongly coupled Fe/N co-doped graphitic carbon nanosheets/carbon nanotubes for rapid degradation of organic pollutants via peroxymonosulfate activation: Performance, mechanism and degradation pathways
    Gan, Yaping
    Zhu, Ke
    Xia, Wen
    Zhu, Shuyi
    Tong, Zhilu
    Chen, Wenting
    Wang, Yumeng
    Lin, Bin
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 302
  • [32] Enhanced performance and recyclability for peroxymonosulfate activation via controlling the different morphologies of g-C3N4
    Tai, Guoyu
    Li, Geng
    Cai, Zhuoyu
    Pan, Yuwei
    Han, Jiangang
    Shi, Jing
    Xing, Weinan
    Wu, Guangyu
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 674
  • [33] Activation of peroxymonosulfate via g-C3N4/CeO2 heterojunction for efficient degradation of nitenpyram under visible light
    Yi, Fanqi
    Li, Wenbo
    Li, Ling
    Zhou, Zhanpeng
    Tang, Rongdi
    Ding, Chunxia
    Deng, Yaocheng
    Gong, Daoxin
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2025, 13 (02):
  • [34] Efficient degradation of emerging organic pollutants via activation of peroxymonosulfate over Fe-N co-doped carbon materials: Singlet oxygen and electron-transfer mechanisms
    Tang, Tian
    Li, Yuqiong
    Di, Xixi
    Shi, Yixuan
    Liu, Dong
    Wang, Wei
    Liu, Zhifeng
    Ji, Xiaohui
    Yu, Xiaohu
    Shao, Xianzhao
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (06):
  • [35] Bifunctional activation of peroxymonosulfate over CuS/g-C3N4 composite for efficient degradation of tetracycline antibiotics
    Cao, Gaoqing
    Shen, Zhurui
    Cui, Jingshan
    Yu, Mingyan
    Li, Weizun
    CHEMICAL ENGINEERING JOURNAL, 2024, 483
  • [36] Simultaneous morphology control and defect regulation in g-C3N4 for peroxymonosulfate activation and bisphenol S degradation
    Zhan, Jianhui
    Zhang, Yuan
    Zhang, Xinfei
    Jia, Xiaobo
    Xie, Honghao
    Gao, Wei
    Wu, Yuliang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 663
  • [37] Preparation of biomass derived Fe/N co-doped porous carbon and its application for catalytic degradation of Rhodamine B via peroxymonosulfate activation
    Wu F.
    Liu Z.
    Xie W.
    You Y.
    Lai R.
    Chen Y.
    Lin G.
    Lu B.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2023, 42 (06): : 3292 - 3301
  • [38] Designing g-C3N4/N-Rich Carbon Fiber Composites for High-Performance Potassium-Ion Hybrid Capacitors
    Qing Shen
    Pengjie Jiang
    Hongcheng He
    Yanhong Feng
    Yong Cai
    Danni Lei
    Mengqiu Cai
    Ming Zhang
    Energy & Environmental Materials, 2021, 4 (04) : 638 - 645
  • [39] Designing g-C3N4/N-Rich Carbon Fiber Composites for High-Performance Potassium-Ion Hybrid Capacitors
    Shen, Qing
    Jiang, Pengjie
    He, Hongcheng
    Feng, Yanhong
    Cai, Yong
    Lei, Danni
    Cai, Mengqiu
    Zhang, Ming
    ENERGY & ENVIRONMENTAL MATERIALS, 2021, 4 (04) : 638 - 645
  • [40] Graphitic Carbon Nitride (g-C3N4)-Derived N-Rich Graphene with Tuneable Interlayer Distance as a High-Rate Anode for Sodium-Ion Batteries
    Liu, Jinlong
    Zhang, Yaqian
    Zhang, Lei
    Xie, Fangxi
    Vasileff, Anthony
    Qiao, Shi-Zhang
    ADVANCED MATERIALS, 2019, 31 (24)